2019 ANNUAL GROUNDWATER MONITORING REPORT FOR THE TOWN OF TIVERTON MUNICIPAL SOLID WASTE LANDFILL TIVERTON, RHODE ISLAND

PREPARED FOR:

TOWN OF TIVERTON 343 HIGHLAND ROAD TIVERTON, RI 02878

PREPARED BY:

PARE CORPORATION

8 BLACKSTONE VALLEY PLACE
LINCOLN, RI 02865

March 2020

TABLE OF CONTENTS

<u>SEC</u>	<u>TION</u>		<u>PAGE</u>
1.0	INTRODU		1
		erview	1
	1.2 Pur	pose and Scope	1
2.0		CRIPTION	2
		neral	2
	2.2 Sen	ni - Annual Landfill Height Survey	3
3.0		LOGIC/HYDROGEOLOGIC SETTING	5
	_	ional Setting	5
		e-Specific Geology	6
	•	drogeology	7
	3.4 Sur	face Water Drainage	8
4.0		UALITY MONITORING PROGRAM	10
	4.1 Gen		10
		ppling Procedures	10
		llytical Parameters	13
		istical Analysis	15
		essment Monitoring	16
	4.6 Lab	oratory Analytical Methods	17
5.0		WATER QUALITY	18
		undwater Results Data	18
		undwater Concentration Trends	21
		1 Appendix A Metals	21
		2 Appendix A VOCs	21
		3 CUSUM Analysis	21
		4 Summary of Assessment Monitoring	22
	5.3 Sur	face Water Results Data	24
6.0	CONCLUS	SIONS	34
7.0	RECOMM	ENDATIONS	36
8.0	REFEREN	CES	37
TAB	LES AND FI	<u>GURES</u>	
Table		2019 Groundwater Elevations	9
Tabl		Summary of Well Completion Details	12
Tabl		Analytical Parameters (Detection Monitoring)	(On Page)14
Table	es 5A – 5H	Summary of Groundwater Monitoring Results	26

TABLE OF CONTENTS (CONT.)

APPENDICES

- A SITE LOCATION MAP
- B LANDFILL EXISTING SITE PLAN
- C 2019 END OF YEAR HEIGHT SURVEY PLAN
- D DECEMBER LABORATORY ANALYTICAL DATA REPORT
- E DECEMBER FIELD SAMPLING DATA SHEETS
- F HISTORICAL DATA SUMMARY PLOTS
- G TOLERANCE INTERVAL STATISTICAL EVALUATION
- H CUSUM METHOD STATISTICAL EVALUATION
- I TOLERANCE LIMIT CALCULATION
- J REPORTED CONCENTRATIONS OF MTBE
- K QUARTERLY MONITORING REPORTS
- L BEDROCK WELL INSTALLATION REPORT

1.0 INTRODUCTION

1.1 Overview

The Tiverton Municipal Sanitary Waste Landfill, also known as the Tiverton Town Landfill #2 (Landfill), has been operating at its present location off Main Road (Route 77) for over sixty years. Operations and monitoring are performed in accordance with the "Draft Operation Plan for the Town of Tiverton Solid Waste Landfill" and the "Draft Groundwater Monitoring Plan for the Town of Tiverton Solid Waste Landfill", both dated September 2017, and pending final DEM approval.

1.2 Purpose and Scope

This Report is intended to summarize the previous three (3) quarterly groundwater monitoring rounds at the Landfill for Year 2019, including identification of potential changes or patterns in the quality of groundwater in the immediate vicinity of the Landfill and any proposed revisions to the Groundwater Monitoring Plan. Note that the September 2019 monitoring round was not performed due to the Eastern Equine Encephalitis (EEE) outbreak in southeastern New England at the time. Per the request of the DEM, surface water monitoring was incorporated into the Town's existing regular quarterly monitoring program. The June 2019 monitoring round marked the first time that surface water monitoring was performed as part of this expanded scope. This Report will also serve as the December 2019 Quarterly Monitoring Report. Specifically, the following sections of this Report provide a discussion of general information pertaining to the Landfill, areas and quantities of landfilling during the Report period, the Landfill geologic and hydrogeologic setting, the groundwater and surface water monitoring program, water quality test results, evaluation of results, summaries and tables, conclusions, and recommendations.

2.0 SITE DESCRIPTION

2.1 General

The Tiverton Landfill is located off of Main Road (Route 77) in Tiverton, Rhode Island. A Site Location Map of the vicinity is presented as Appendix A. The Landfill property encompasses approximately 125 acres, of which approximately 33 acres are permitted for solid waste landfilling activities. The remainder of the property is used for the collection and transfer of recyclables, records and equipment maintenance, runoff control, and a wooded buffer. Also located within the property boundaries is a public recreation area situated approximately one-quarter (1/4) mile west of the active landfill, adjacent to Main Road. Landfill features are identified on Appendix B – Landfill Existing Site Plan.

The Town of Tiverton has been operating the Landfill for over 60 years. The Landfill was opened in 1952 and was originally used as an unregulated open burning dump. In 1977, the State instituted regulation of the Landfill by issuing the Town a permit to operate. In 1982, the State implemented the solid waste operating guidelines entitled, "Rules and Regulations of Solid Waste Management Facilities" and the Town received an Administrative Order to comply with Rule 10.12. As a result of this Order, the Town established a two hundred foot (200') buffer within the property boundary where no future landfilling could occur.

Prior to the 1982 guidelines, some landfilling occurred in what is now delineated as the southern buffer. In 1987, the Town purchased 6.3 acres along the southern property line from the abutting landowners. With this purchase, the Town was able to create a new buffer from where prior landfilling occurred in the southern section of the Landfill. Due to the swampy area in the southeastern corner of the Landfill, the Town increased the eastern buffer from 200 feet to 350 feet in June of 1993. In addition, a test pit evaluation program, performed by Pare in July 2005, indicated that historical trash filling in the northeast corner of the landform had occurred beyond what was believed to be the northern and eastern limits of the landfill, approximately 100 feet into the 200-foot buffer from the northern property line and approximately 80 feet into the 350-foot buffer from the eastern property line. The property to the north of the Site is conservation land, referred to as the Pardon Gray Preserve. The property to the east of the Site is a Town-owned right-of-way. The revised limits of historical trash filling were brought to the RIDEM's attention in the 2005 Operating License Renewal documents. The limits of historical trash filling, as they are known to date, are shown on the attached Existing Site Plan.

In 2019, the Town landfilled municipal solid waste (MSW), and non-salvageable bulky waste. Recyclables, tires, and salvageable bulky wastes (i.e., white goods and scrap metal) are collected at the Landfill and transported by commercial haulers to appropriate facilities for reuse. A 2006 Town-wide Solid Waste Ordinance places restrictions on the amount of C&D debris that is accepted by the Town, and prohibits landfilling of solid waste generated by commercial users. In May 2011, the Town implemented a Pay-As-You-Throw (PAYT) program to reduce the amount of solid waste entering the Landfill. It appears as though the PAYT program has reduced the volume of trash coming to the Landfill based on the last several years of landfilling estimates.

The volume of waste generated and landfilled by the Town is evaluated semi-annually, after the completion of each height survey and review of the Town annual recycling records. Landfill height surveys are typically performed in January and July each year. Based on Town records, approximately 2,031 tons of materials were recycled during Year 2019.

In Year 2012, the Town consolidated their source-segregated recyclables into a "single stream" to be direct-hauled to the Rhode Island Resource Recovery Corporation (RIRRC). In 2019, this "single stream" consisted of paper, bottles, cans and rigid plastic for the year. Due to this change, Pare is unable to provide a break-down of the exact tonnage of recycled materials.

2.2 Semi-Annual Landfill Height Survey

Pare personnel visited the Landfill on July 5, 2019 and January 14, 2020 to perform semi-annual Landfill height surveys. The purpose of the height surveys is to document the area of the active portion of the Landfill that was filled during the previous year and to quantify the volume of trash disposed. The height surveys are also performed to ensure that the Town does not exceed the vertical limit permitted by the RIDEM. The results of both surveys are depicted on the 2019 End of Year Height Survey Plan in Appendix C. The approximate areas of the Landfill that were filled during 2019 are depicted on this Plan.

Based on the semi-annual height survey data, it is estimated that the Town landfilled approximately 14,250 cubic yards (cy) of municipal solid waste since the previous End-of-Year Landfill Height Survey performed in January 2019, including Daily Cover material. Assuming a compacted waste density of approximately 1,000 lbs./cy and a waste to cover density ration of 80 percent, this represents a waste landfilling rate of approximately 5,700 tons of municipal solid waste for Year 2019. The landfilling rate for 2019 is consistent with the 2018 rate. The Landfill staff indicated the volume of

daily cover material during landfilling operations increased in 2018, which may account for the increase in the landfilling rate compared to previous years.

As of the 2016 End of Year height survey, the Town has finished utilizing all available space in the area north of the landfill access road in the portion of the landfill known as the "hole to the north". Landfilling has since transitioned back to the southern half of the landfill. In 2018, the Town completed the southern-most cell and has commenced filling the eastern end of the access road. The access road is the final portion of the landfill to be filled prior to permanent closure, consistent with the *Landfill Closure Final Grade Plan*, provided with the 2017 license application.

As of the 2019 End of Year height survey, the elevation of the Landfill, north of the access road, ranged from elevation $100.0 \pm to 141.0 \pm feet$ MSL (NGVD 29). The southern half of the Landfill remains the highest area of the Landfill, with elevations ranging from 146 to 158 feet. The permitted maximum height of the Landfill is 160 feet. The overall height of the landfill has not increased significantly in 2019 because the Town focused their filling on areas that were generally low, leaving the higher areas of the landfill relatively untouched.

3.0 SITE GEOLOGIC/HYDROGEOLOGIC SETTING

3.1 Regional Setting

The Landfill is located within the Narragansett till of eastern Rhode Island. The area is marked by low drumlinoid hills smoothed by glacial action. Glacial till deposits consist of an unsorted mixture of clay to boulder sized particles. The Narragansett till is generally dark gray to olive colored and is compact with a fine textured matrix. The till particles are derived from nearby sedimentary rocks: shale, sandstone, and conglomerate (Rector, 1981). As the Landfill is near the edge of the Narragansett till plain, the till may contain material derived from granite rocks (Rector, 1981, pp. 99 and 89).

Stratified outwash and fluvial deposits overlie some parts of the glacial till. These deposits are widespread throughout the state and are the result of meltwater from the retreating glacier of approximately 10,000 years ago. These meltwater deposits contain sand, gravel and silt forming kames, eskers, terraces and outwash plains, many of which have been commercially exploited (Rector, 1981).

The soils beneath and surrounding the Landfill tend to have moderate to moderately rapid permeability near the surface and slow to very slow permeability in the substratum due to the clay content of the underlying till from which the soils are derived. The United States Department of Agriculture, Soil Conservation Service (SCS) maps soils adjacent to the Landfill as the Newport Silt Loam and the Newport Very Stony Silt Loam, (Rector, 1981). Other SCS classified soils adjacent to the Landfill include the Stissing Silt Loam and the Quonset Gravelly Sandy Loam.

Pollock (1964) mapped the bedrock beneath the Landfill as Bulgarmarsh Granite. This unit is described as a pink to gray, coarse-grained quartz-feldspar-muscovite-chlorite granite that is generally foliated. A north-south trending unconformable contact with younger Pennsylvanian age sedimentary rocks lies approximately 500 feet west of the limit of the permitted Landfill. A northeast-southwest trending contact with the Pre-Cambrian Mica-Chlorite Schist unit lies approximately 1,500 feet to the southeast of the Landfill. Mapped outcrops of the Bulgarmarsh Granite are present at High Rock (Appendix A) approximately 600 feet east of the Landfill.

3.2 Site-Specific Geology

Information on Site-specific characteristics of the geologic deposits beneath the Landfill area was obtained by reviewing historical logs of borings previously drilled by others at ten locations in August 1981, September 1994, September 1996 and September 2001. Five (5) of the borings were former groundwater monitoring well locations (OW-1A, OW-2, OW-3, OW-5, and OW-9). Per the approval of the RIDEM, these groundwater monitoring wells, with the exception of OW-9, have been abandoned and replaced with new groundwater monitoring wells. As indicated on the logs the borings were advanced to final depths of between 11 and 27 feet.

The materials logged during these boring programs are consistent with the regional geology described above. Soils were reported to consist of fine to coarse sand with silt, fine to medium gravel and cobbles. A boulder was encountered in the boring for OW-5. Gray-brown till was encountered in the boring for OW-3. All borings encountered refusal at depths between 11 and 27 feet below grade. The boring log for OW-3 identified granite at a depth of 16 feet. It is unclear if the other borings encountered bedrock or boulders in till at the depth of refusal. The average thickness of the overburden is reported to be 20 feet in the Tiverton area (NUS, 1990).

New monitoring wells OW-12, OW-13, and OW-14 were installed in August 2006. Another new monitoring well, OW-15, was installed in August 2007. These new wells were added to the monitoring program to replace compliance wells OW-1A, OW-2, OW-3, and OW-5 when it was discovered that these wells were drilled within the footprint of the landfill. As indicated in the logs, which are provided in Pare's original well completion letters prepared for their installation, the borings were advanced to final depths ranging from approximately 10 to 16 feet.

The materials logged during these boring programs are consistent with the regional geology described above. Soils were reported to consist of silty sand with trace gravel, silty sand with trace organics, silty sand with gravel, and sandy soil. Bedrock was encountered at a depth of 10 feet in the boring for OW-14. Borings for OW-12, OW-13, and OW-15 did not encounter refusal.

The new bedrock monitoring well OW-16 was installed in October 2017. This well was installed in the vicinity of overburden well OW-7. These wells are downgradient of groundwater flow, giving a depiction of the groundwater quality migrating offsite. The top of granite bedrock was encountered at 10.5 feet below the ground surface, with groundwater first being observed at 17 feet below the ground surface. The total depth of the well is 42 feet.

The new background well OW-17 was installed in June 2019. This well was installed in the northern portion of the landfill, roughly evenly spaced between OW-9 and OW-12. In addition, OW-17 is located such that it will not have to be relocated once the future stormwater controls are constructed around the site as part of the proposed landfill closure activities. The top of granite bedrock was encountered at 10.5 feet below the ground surface, with groundwater first being observed at 17 feet below the ground surface. The total depth of the well is 42 feet.

3.3 Hydrogeology

During the last year, the depth of the groundwater table at the Site ranged from 2.3 to 13.7 feet below grade based on recorded groundwater elevations from sampling rounds conducted from March 2019 to December 2019. Based on the groundwater elevations and topographic information on the USGS Topographic Map - Tiverton, Rhode Island (dated 1949, photo revised 1970 and 1975), the inferred direction of shallow groundwater flow from the eastern portion (i.e., Landfill portion) of the Site is generally to the west toward the stream and wetland complex (refer to Appendix B). However, shallow groundwater flow from the extreme eastern end of the Site may be northeasterly and southeasterly toward the wetland and stream systems identified as Cedar Swamp Brook and Borden Brook. Actual flow directions may be somewhat impacted by Landfill operations at the eastern end of the Site.

Based on groundwater elevation data collected at the Site, the direction of shallow groundwater flow from the recreational field area (i.e. western end) of the Site appears to be easterly, toward the stream and wetland complex. Data is not available to evaluate groundwater flow patterns in bedrock underlying the Site. Groundwater elevation data collected from the background well and compliance wells for the 2019 quarterly monitoring periods are presented in Table 3A.

It should be noted that the RIDEM Rules and Regulations for Groundwater Quality classify groundwater beneath and in the immediate vicinity of the licensed Landfill portion of the Site as GC and GB. Groundwater classified as GC is defined by the RIDEM as, "...those areas which, because of present or past land use or hydrogeologic conditions, the Director has determined to be more suitable for certain waste disposal practices than for development as a drinking water supply." Specifically, groundwater beneath disposal sites, such as the Tiverton Landfill, is classified as GC. Groundwater classified as GB is defined by the RIDEM, "...as those groundwater resources designated by the Director which may not be suitable for public or private drinking water use without treatment due to known or presumed degradation."

3.4 Surface Water Drainage

Based upon topographic information obtained from the USGS Topographic Map, Tiverton, Rhode Island, 1949 as depicted on Appendix A and topographic contours depicted on the Landfill Existing Site Plan, the direction of surface water drainage from the eastern (i.e., Landfill portion) end of the Site and from the western end of the Site (recreation field area) is generally toward the on-Site wetland complex. This wetland complex is part of the southerly flowing Quaker Creek. Regionally, Quaker Creek flows south-southwest, discharges into Nonquit Pond, and ultimately to the Sakonnet River. However, runoff from the extreme northeastern corner of the Site appears to be northeasterly toward the wetland and stream systems identified as Cedar Swamp Brook and Borden Brook. These water bodies flow south and southwest, and merge with Quaker Creek to the south of the Site.

TABLE 3A

2019 GROUNDWATER ELEVATIONS

2019 ANNUAL GROUNDWATER MONITORING REPORT TIVERTON MUNICIPAL SANITARY WASTE LANDFILL TIVERTON, RHODE ISLAND

	REFERENCE		2019 GROUNDWATER ELEVATIONS						
			3/28/2019		6/27/2019		12/23/2019		
WELL	TOP OF PVC PIPE (ft- MSL)	APPROX. GROUND SURFACE (ft-MSL)	DEPTH TO WATER*	GROUND- WATER ELEVATION	DEPTH TO WATER*	GROUND- WATER ELEVATION	DEPTH TO WATER*	GROUND- WATER ELEVATION	
	WISE)	(It-MSL)	(feet)	(ft-MSL)	(feet)	(ft-MSL)	(feet)	(ft-MSL)	
OW-12	63.28	60.5	2.3	60.98	3.5	59.78	2.8	60.48	
OW-13	50.14	46	3.8	46.34	4.0	46.14	4.1	46.04	
OW-14	85.63	83.5	3.6	82.03	6.5	79.13	5.3	80.33	
OW-15	77.07	74.5	7.0	70.07	7.2	69.87	7.1	69.97	
OW-9	128.65	126.5	12.5	116.15	13.7	114.95	13.7	114.95	

^{*}Measured from top of PVC pipe

4.0 WATER QUALITY MONITORING PROGRAM

4.1 General

The Groundwater Monitoring Program for the Landfill consists of quarterly monitoring at seven (7) groundwater wells, designated OW-7, OW-9, OW-12, OW-13, OW-14, OW-15, and OW-16; the locations of these wells are shown on Appendix B, Landfill Existing Site Plan. The year 2018 was the first monitoring year in which OW-7 and OW-16 were included in the quarterly monitoring program. Monitoring wells OW-7 and OW-16 were first sampled at the request of the RIDEM in November 2017 and have since been incorporated into the regular quarterly monitoring program. The June 2019 monitoring round marked the first monitoring round in which OW-12 was re-designated as a background well. Monitoring well completion details, including well depths, diameters and screened intervals are summarized on Table 4A, which follows this page. Sampling of the monitoring wells during the 2019 reporting period was performed by Pare personnel on March 28th, June 27th, and December 23rd.

Based on the inferred direction of shallow groundwater flow beneath the Landfill portion of the Site, the monitoring wells are classified in the following categories:

- Background Well OW-9 and OW-12
- Compliance Wells OW-7, OW-13, OW-14, OW-15, and OW-16

The Surface Water Monitoring Program for the landfill consists of quarterly monitoring at three (3) surface water locations, designated SW-1, SW-2, and SW-3; the locations of these surface water locations are also shown on Appendix B. The June 2019 monitoring round marked the first monitoring round in which surface water sampling was included in the quarterly monitoring program. Sampling of the surface water locations during the 2019 reporting period was performed by Pare personnel on June 27th and December 23rd.

4.2 Sampling Procedures

Prior to the May 2002 monitoring round, the Town received verbal approval from the RIDEM to modify the approved groundwater purging and sampling method. Previously, a bailer method of purging and sampling was employed during monitoring events. Subsequent to approval by the RIDEM, the bailer method of purging and sampling was replaced by a low-flow purging and sampling technique that uses a variable speed peristaltic pump, fitted with Teflon-lined silicon tubing attached

to polyethylene down-well tubing. Low-flow purging reduces the rate at which groundwater is evacuated from the monitoring well, as compared to conventional bailer methods. The use of low-flow purging has been shown to reduce colloid mobilization, thereby reducing the turbidity of samples. Lower turbidity means a reduction in colloid-transported contaminants such as metals, which can sorb to the colloid surface. In addition, this technique reduces the likelihood of purging a well dry before sampling. Finally, low-flow purging reduces the cascading effect that can occur as a well recharges, thereby reducing the volatilization of VOCs before sampling by conventional bailer methods.

The well purging and sampling procedure was further modified in 2005 to reduce the volume of water purged prior to collecting a sample. Previously, a minimum of three well volumes was purged from each well prior to sampling. Presently, the volume of water evacuated during purging is based on the stabilization of water quality field parameters, consisting of specific conductivity, pH, and temperature, in accordance with published EPA guidance on low-flow groundwater purging and sampling (Porfert and Sotolongo, 1996, rev. 2010). Each well is purged until water quality parameters have stabilized for three successive measurements. Stabilization is achieved when pH readings are within $0.1\pm$ pH unit, specific conductivity is within $3\%\pm$, and temperature is within $3\%\pm$. The stabilization of field parameters typically indicates that the stagnant water in the well has been sufficiently evacuated and that samples collected are representative of the groundwater aquifer. Regardless of the field parameters, no less than one well volume is purged from each well, to further ensure the stagnant water has been evacuated from the well. This procedure improves efficiency while ensuring that the samples are collected from the aquifer and not stagnant water inside the well.

The well sampling procedure was modified again in 2017 to reduce the turbidity in samples collected. The procedure was updated to include a 10-15 minute period for suspended solids to settle, before the sample is decanted and then stored in laboratory glassware with preservative. Additionally, during the March 2017 monitoring round, accumulated sediment in the wells at the Landfill was removed prior to sampling.

Similar to the well sampling procedure modified in 2017, the surface water sampling procedure includes a 15 minute period for suspended solids to settle out. This procedure is in response to historic high turbidity observed in surface water samples. Once the settling period is over, samples are decanted to appropriate laboratory supplied glassware and preserved as necessary.

TABLE 4A

SUMMARY OF WELL COMPLETION DETAILS

2019 ANNUAL GROUNDWATER MONITORING REPORT TIVERTON MUNICIPAL SANITARY WASTE LANDFILL TIVERTON, RHODE ISLAND

	ELEVATION			TOTAL DEPTH	I DEPTH TO TOP	MONITORED ZONE		
WELL I.D.	APPROX. TOP OF STEEL CASING (ft-MSL)	APPROX. GROUND SURFACE (ft-MSL)	WELL DIAMETER (inches)	OF WELL FROM TOP OF PVC PIPE (feet)	OF SCREEN (feet)	SCREEN LENGTH (feet)	DATE INSTALLED OR REPAIRED	
OW-9	129.1	125.5	2	14.2	5	8	9/19/96	
OW-12	63.78	60.5	2	16.0	3	10	8/23/06	
OW-13* (Repair)	49.39	46	2	14.4	4.5	8	6/26/09	
OW-14	86.13	83.5	2	8.0	3	6	8/22/06	
OW-15	76	74.5	2	8.5	3.5	10	8/21/07	

Source: Groundwater Monitoring Plan for the Town of Tiverton Solid Waste Landfill. January 2003. Prepared by Pare Corporation.

* Well construction details after steel casing and PVC pipe for monitoring well OW-13 were slightly lowered by Town personnel in June 2009. Ground surface around well remained at original elevation.

4.3 Analytical Parameters

The Appendix A (Detection Monitoring) parameters, as defined in Regulation No. 2 of the Rules and Regulations for Solid Waste Management Facilities (Solid Waste Regulations) plus mercury and tin, were analyzed during the March, June, and December monitoring rounds. The Appendix A parameters consist of metals and volatile organic compounds (VOCs), as listed in Table 4B. Mercury and tin, though not included in Appendix A of the Solid Waste Regulations, have historically been included for analysis. These parameters are routinely monitored at the background well and compliance wells each quarter.

Assessment Monitoring parameters (Appendix B of Regulation No. 2 of the Solid Waste Regulations) are a comprehensive list of parameters that include semi-volatile organic compounds, herbicides, pesticides, PCB's, sulfate, phenols and cyanide that are in addition to the standard parameters for Detection Monitoring. Assessment monitoring is performed based on statistical analysis of data collected from detection monitoring, as described in subsequent sections of this document.

The parameters sampled as part of the regular quarterly surface water monitoring program include the abovementioned parameters which have been historically included in the groundwater monitoring program, and those parameters that were recently detected at elevated concentrations in the most recent stormwater runoff sampling at the site. These parameters include: Appendix A metals, mercury, tin, iron, ammonia, TKN, total nitrogen, total phosphorus, and hardness. In addition, field screening is performed at each surface water location to determine temperature, pH, and specific conductivity.

TABLE 4B

ANALYTICAL PARAMETERS (DETECTION MONITORING)

2019 ANNUAL GROUNDWATER MONITORING REPORT TIVERTON MUNICIPAL SANITARY WASTE LANDFILL TIVERTON, RHODE ISLAND

Field Parameters Bromodichloromethane

Depth to Water Bromoform
pH Carbon disulfide
Specific Conductance Carbon Tetrachloride
Temperature Chlorobenzene

Chloroethane

Inorganic Constituents Chloroform

Antimony Dibromochloro-methane
Arsenic 1,2-Dibromo-3-chloropropane

Barium 1,2-Dibromoethane Beryllium o-Dichlorobenzene Cadmium p-Dichlorobenzene

Chromium Trans-1, 4-Dichloro-2butene

Cobalt 1,1-Dichloroethane
Copper 1,2-Dichloroethane
Lead 1,1-Dichloroethylene
Mercury Cis-1, 2-Dichloroethylene
Nickel Trans, -1,2- Dichloroethylene

Selenium 1,2-Dichloropropane
Silver Cis-1,3-Dichloropropene
Tin Trans-1,3-Dichloropropene

Thallium Ethylbenzene
Vanadium 2-Hexanone
Zinc Methyl bromide

Methyl chloride

Organic ConstituentsMethylene bromideAcetoneMethylene chlorideAcrylonitrileMethyl ethyl ketoneBenzeneMethyl iodide

Bromochloromethane 4-Methyl-2-pentanone

Methyl-tert Butyl Ether (MTBE)

Styrene

1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene

Toluene

1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoro-methane 1,2,3-Trichloropropane

Vinyl acetate Vinyl chloride Xylenes

4.4 Statistical Analysis

Since the March 1999 monitoring round, the Tolerance Interval (TI) method has been employed per mandate of the RIDEM to compare inorganic analytic results from the background well with the results from the compliance wells. The TI method is one of several statistical methods identified in the January 1997 "Solid Waste Regulations" and has been approved for use at the Landfill by the RIDEM, per the RIDEM's letter of June 10, 1999.

The intent of the TI method is to evaluate if there exists a statistically evident exceedance of an Appendix A parameter over background concentrations. If a contaminant is reported in groundwater sampled from a compliance well at a concentration that statistically exceeds that of the background concentration, it suggests that the presence of that contaminant is, at least in part, derived from landfilling activities. To perform the TI evaluation, Tolerance Limits (TLs) are constructed for each inorganic parameter from a minimum of eight (8) of the most recent monitoring rounds from the background well OW-9 (refer to Appendix I – Tolerance Limit Calculation).

The Appendix A volatile organic compounds (VOCs) do not occur naturally, and therefore, are not anticipated to be present in the background well results data. For this reason, the TI method for the evaluation of the Compliance Well Appendix A VOC results is considered inappropriate. Previously, the approach for determining exceedances for VOCs in the Compliance Well results data was through comparison of the results data to the National Primary Drinking Water Standards (NPDWS) maximum contaminant levels¹ (MCL), where published. Other cited human health thresholds were used for comparison where MCLs have not been established.

As discussed in the May 2006 "Groundwater Monitoring Plan", Pare has added the Shewhart-CUSUM Method as a supplemental statistical analysis method in addition to the TI Method. The purpose of the Shewhart-CUSUM Method is to evaluate contaminant trends in groundwater over a long period of time. In order to conduct the first round of the statistical analysis for compliance wells OW-12, OW-13, OW-14, and OW-15, Pare constructed Control Charts for each target constituent at each monitoring well, as outlined in the USEPA documents entitled "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Interim Final Guidance, April 1989" and "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Addendum To Interim Final Guidance, July, 1992". The Control Charts are based on the mean and standard deviation of the first eight (8) reported

¹Maximum Contaminant Level (MCL), defined as the highest level of a contaminant that is allowed in drinking water.

concentrations of the target constituent since the installation of the wells in August 2006, which is referred to as the baseline data (Standardized Mean). Pare has compiled enough data to construct the CUSUM baseline and to evaluate groundwater trends at the background well and at OW-12, OW-13, OW-14, and OW-15.

With the addition of the CUSUM statistical analysis, the triggering mechanism for Assessment Monitoring has been revised. In accordance with the May 2006 Groundwater Monitoring Plan, Assessment Monitoring is triggered if:

- An inorganic parameter exceeds the upper Tolerance Limit in two consecutive rounds and that parameter exceeds one of the two Shewhart-CUSUM control limits in the latter monitoring round; or
- 2. An organic parameter exceeds one of the two Shewhart-CUSUM control limits.

4.5 Assessment Monitoring

Pare did not perform Assessment Monitoring at any of the compliance wells during the 2019 period. OW-14 was sampled for sulfides in the March 2019 round, as recommended by the previous annual report, and sulfides were not detected in the sample collected. This marked the second consecutive round in which sulfides were not detected at OW-14, therefore, sulfides monitoring was discontinued for subsequent rounds.

Barium at OW-13 exceeded both of its Shewhart-CUSUM control limits, and a Shewhart-CUSUM exceedance this round, and has exceeded its Tolerance Limit for two consecutive rounds, which would trigger Assessment Monitoring. Barium is consistently detected in all the groundwater monitoring wells on-site at concentrations consistent with the recent detection at OW-13. As such, it does not, in Pare's opinion, appear as though this recent detection is a significant change in groundwater quality beneath the landfill, and therefore, Pare does not recommend Assessment Monitoring in March 2020.

4.6 Laboratory Analytical Methods

Groundwater samples are transported to New England Testing Laboratory, Inc. of West Warwick, Rhode Island for chemical analyses. All samples are handled, stored, and manifested in accordance with the Groundwater Monitoring Plan for the Tiverton Landfill. The 2019 Detection Monitoring program was conducted for the parameters listed on Table 4B by the following methods:

•	Volatile Organic Compounds (VOCs)	Method 8260 B
•	Total Metals	
	- Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, Sn, V, Zn	Method 6010 B
	Tl	
	Sn	
	Method 7870 NE	
	- Hg	Method 7470 A

The analytical methods for Appendix B parameters are provided below:

Detection Monitoring (Appendix A) parameters, listed in Table 4B
 Semi-Volatile Organic Compounds (SVOCs)

 Method 8270 C

 Polychlorinated Biphenyls (PCBs)

 Method 8082
 Herbicides
 Method 8151A
 Pesticides
 Method 8081 A
 Cyanide
 Method 335.5
 Phenols
 Method 420.1
 Sulfate
 Method 375.4

5.0 GROUNDWATER QUALITY

5.1 Groundwater Results Data

The complete text of the March 2019 and June 2019 quarterly monitoring reports, as previously presented to the RIDEM, are provided for reference in Appendix K of this Report. As stated in Section 1.2, this Report serves as the December 2019 Quarterly Monitoring Report in addition to summarizing groundwater quality observed throughout the year.

A tabular summary of the laboratory analytical results data for this Report period, by sample location, is provided on Tables 5A through 5H, which includes March 2019, June 2019, and December 2019 quarterly monitoring data. A new bedrock well was installed south of the Landfill on October 5, 2017, after two days of drilling. All values that are highlighted in gray represent statistically evident exceedances of Appendix A inorganic compounds relative to their Tolerance Limits. During the 2019 monitoring period, there were twenty-seven (27) reported TL exceedances for Appendix A metals. Analytical results for each well are further summarized in this section.

Note that groundwater was not detected at OW-7 or OW-16 in the December 2019 as the two wells were frozen at the time of sampling. Groundwater was collected in every monitoring round at the other monitoring wells.

OW-9

Analytical results data from this well (i.e., background well) indicate consistent detection (i.e., at least two out of three monitoring rounds) of nine (9) target metals: arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, and zinc. Antimony, silver, and vanadium were also reported above their respective method detection limits in at least one monitoring round throughout the year. No (0) metals were reported above their respective MCLs during the 2019 monitoring period.

No (0) VOCs were reported above their respective detection limits at OW-9 in the 2019 monitoring year. Refer to Table 5A for a yearly summary of detections at OW-9.

OW-7

Sampling could not be performed at OW-7 during the December 2019 monitoring round due to OW-7 being frozen at the time. Analytical results data for OW-7 indicate consistent detection for the two

monitoring rounds in which samples could be collected of eleven (11) target metals: antimony, arsenic, barium, cadmium, chromium, cobalt, copper, lead, nickel, vanadium and zinc. Silver was also reported above its method detection limit at in at least one sampling round throughout the year. No (0) metals were reported above their respective MCLs during the 2019 monitoring period.

The analytical results also indicate consistent detection of one (1) VOC: MTBE. None of the reported VOC concentrations exceeded their cited human health threshold values. Refer to Table 5B for a yearly summary of detections at OW-7.

OW-12

Analytical results data for OW-12 (i.e., background well) indicate consistent detection of six (6) target metals: barium, cadmium, chromium, cobalt, lead, and nickel. Silver and zinc were also reported above their respective method detection limits at various times in at least one sampling round throughout the year. No (0) metals were reported above their respective MCLs during the 2019 monitoring period.

No (0) VOCs were reported above their respective detection limits at OW-12 in the 2019 monitoring year. Refer to Table 5C for a yearly summary of detections at OW-12.

OW-13

Analytical results data for OW-13 indicate consistent detection of nine (9) target metals throughout the year: arsenic barium, cadmium, chromium, cobalt, copper, lead, nickel, and zinc. One (1) metal; arsenic; was reported above its MCL on one (1) occasion at OW-13 during the 2019 monitoring period.

The analytical results also indicate consistent detection of two (2) VOCs: chlorobenzene and MTBE. In addition, acetone and 1,4-dichlorobenzene were reported above their respective method detection limits at various times in at least one sampling round throughout the year. None of the reported VOC concentrations exceeded their cited human health threshold values. Refer to Table 5D for a yearly summary of detections at OW-13.

OW-14

Analytical results data for OW-14 indicate consistent detection of nine (9) target metals: antimony, arsenic, barium, chromium, cobalt, lead, nickel, vanadium and zinc. Cadmium, copper, and silver

were also reported above their respective method detection limits in at least one monitoring round throughout the year. No (0) metals were reported above their respective MCLs during the 2019 monitoring period.

The analytical results also indicate consistent detection of four (4) VOCs: benzene, chlorobenzene, and 1,4 dichlorobenzene, and MTBE. Acetone was also reported above its method detection limit at in at least one sampling round throughout the year. No target VOCs were reported above their respective human health threshold values at OW-14. Refer to Table 5E for a yearly summary of detections at OW-14.

OW-15

Analytical results data for OW-15 indicate consistent detection of eight (8) target metals: arsenic, barium, chromium, cobalt, lead, nickel, vanadium, and zinc. Copper and silver were also reported above their respective method detection limits in at least one monitoring round throughout the year. One (1) metal, arsenic, were reported above their MCLs for a total of three (3) exceedances at OW-15 during the 2019 monitoring period.

The analytical results indicate consistent detection of four (4) VOCs: benzene, chlorobenzene, 1,4-dichlorobenzene, and MTBE. Acetone was also reported above its method detection limit at in at least one sampling round throughout the year. None of the reported concentrations exceeded their cited human health threshold values. Refer to Table 5F for a yearly summary of detections at OW-15.

OW-16

Sampling could not be performed at OW-16 during the December 2019 monitoring round due to OW-16 being frozen at the time. Analytical results data for OW-16 indicate consistent detection for the two monitoring rounds in which samples could be collected of six (6) target metals: barium, beryllium, cadmium, cobalt, nickel, and zinc. Silver was also reported above its method detection limit at in at least one sampling round throughout the year. No (0) metals were reported above their respective MCLs during the 2019 monitoring period.

The analytical results also indicate consistent detection of one (1) VOC: MTBE. None of the reported VOC concentrations exceeded their cited human health threshold values. Refer to Table 5G for a yearly summary of detections at OW-16.

5.2 Groundwater Concentration Trends

This section provides a discussion of recent and historical groundwater concentration trends of monitoring parameters in the Background Well and Compliance Wells at the Landfill.

5.2.1 Appendix A Metals

Historical concentrations of detected Appendix A metals, since the inception of low-flow purging and sampling in May 2002, are presented graphically on the plots provided in Appendix F of this Report. During the 2019 monitoring period, there were twenty-seven (27) reported TL exceedances for Appendix A metals. Although this number of exceedances is lower than recent years, it should be noted that the September 2019 monitoring round was not completed due to concerns about Eastern Equine Encephalitis in the area. The TL exceedances indicate statistically elevated concentrations of target metals in the compliance wells over the background well. This is represented on the attached charts that show the results of monitoring of Appendix A parameters at each well since the inception of low flow purging and sampling.

5.2.2 Appendix A VOCs

As discussed in Section 5.1, several VOCs were reported in groundwater from the compliance wells in 2019. Each detected VOC concentration across the landfill was below its cited human health threshold value. All reported VOC compounds and ranges of reported concentrations in groundwater from the compliance wells for this reporting period are generally consistent with historical data.

5.2.3 CUSUM Analysis

The Shewhart-CUSUM statistical analysis is used to evaluate whether Assessment Monitoring should be performed at a well if a statistical deterioration in groundwater quality is suspected. The results of the CUSUM analysis for 2019 generally confirm Pare's opinion that there exists consistent low-level impact to groundwater beneath and downgradient of the Landfill as a result of landfilling activities. The following are results of the CUSUM analysis reported for 2019 at the background well and the compliance wells.

OW-9

No (0) CUSUM or standardized mean values crossed their thresholds at OW-9 in the 2019 monitoring period.

OW-12

Barium crossed its standardized mean thresholds in all three monitoring rounds in the 2019 monitoring period. Barium has been in exceedance of its CUSUM threshold since the December 2013 monitoring round. No (0) metals aside from barium exceeded both their CUSUM and standardized mean thresholds in the 2019 monitoring period. Despite these CUSUM threshold exceedances, Assessment monitoring was not performed at OW-12 in 2019 because these constituents did not exceed their TLs.

OW-13

In the March 2019 and December 2019 monitoring rounds, barium crossed both its CUSUM and standardized mean value thresholds. No (0) metals exceeded their CUSUM or standardized mean thresholds at OW-13 during the June 2019 round.

OW-14

No (0) CUSUM or standardized mean values crossed their thresholds at OW-14 in the 2019 monitoring period.

OW-15

In the June 2019 monitoring round, MTBE crossed both its CUSUM and standardized mean threshold values. No (0) metals exceeded their CUSUM or standardized mean thresholds at OW-15in the 2019 monitoring period.

5.2.4 Summary of Assessment Monitoring

The need for Assessment Monitoring will be evaluated and coordinated with the RIDEM if the following conditions are met:

- An inorganic parameter exceeds the upper Tolerance Limit in two consecutive rounds and that parameter exceeds one of the two Shewhart-CUSUM control limits in the latter monitoring round; or
- An organic parameter exceeds one of the two Shewhart-CUSUM control limits. Analytical data
 will continue to be compared to US EPA Maximum Contaminant Levels (MCLs) or other healthbased criteria for parameters that do not have MCLs assigned each monitoring round.

Pare did not perform Assessment Monitoring at any of the compliance wells during the 2019 period.

OW-14 was sampled for sulfides in the March 2019 round, as recommended by the previous annual report, and sulfides were not detected in the sample collected. This marked the second consecutive round in which sulfides were not detected at OW-14, therefore, sulfides monitoring was discontinued for subsequent rounds.

Barium at OW-13 exceeded both of its Shewhart-CUSUM control limits, and a Shewhart-CUSUM exceedance this round, and has exceeded its Tolerance Limit for two consecutive rounds, which would trigger Assessment Monitoring. Barium is consistently detected in all the groundwater monitoring wells on-site at concentrations consistent with the recent detection at OW-13. As such, it does not, in Pare's opinion, appear as though this recent detection is a significant change in groundwater quality beneath the landfill, and therefore, Pare does not recommend Assessment Monitoring in March 2020.

Although the CUSUM values have increased for a number of parameters, the concentrations of those parameters remain consistently below their human health thresholds. The Shewhart-CUSUM is an analysis utilized to evaluate trends in a data set, specifically measuring the impact of a deviation from the baseline data referenced above. When a parameter has historically been "non-detect", any detection of that parameter can result in a significant, albeit somewhat misleading, jump in CUSUM values. Any reported concentration above a parameter's detection limit is interpreted as a relatively large deviation from the artificially low baseline data, thereby causing a significant artificial increase in CUSUM values. It should also be noted that because of the nature of the CUSUM analysis, a greater spread in data (i.e., a greater difference in reported concentrations quarter over quarter) can cause an increase in CUSUM values.

MTBE Concentration Comparative Analysis

MTBE is given special attention based on past historical data and a generally increasing trend in reported concentrations at the Landfill. During the 2019 monitoring period, the CUSUM value for MTBE was above its threshold at OW13, OW-14, and OW-15. Reported MTBE concentrations at OW-15 have generally risen since September 2006, ranging from 0.0036 mg/L to 0.0122 mg/L, as depicted in the attached figure titled *Reported Concentrations of MTBE* in Appendix J of this Report. The figure compares the recent increases in reported MTBE concentrations at OW-15 to historical concentrations and drinking water advisories. The reported concentration of MTBE at OW-13 and OW-14 has varied significantly since 2006; however, over that period there does not appear to be a significant upward trend in MTBE concentrations. The CUSUM evaluation suggests that there is an upward trend in data; however, the average concentration has risen less than 0.001 mg/L over the last 13 years at OW-13 and OW-14.

Although MTBE has been consistently reported at OW-13, OW-14, and OW-15, MTBE has never been reported above its odor threshold (0.020 mg/L) or its taste threshold (0.040 mg/L) at the Landfill. The US EPA has not established a human health advisory concentration for MTBE. Because the elevated concentrations of MTBE has caused Assessment Monitoring to be triggered at OW-13, OW-14, and OW-15 at various times over the past five years, and no Appendix B parameters have been reported to a significant degree in any of the samples collected as a result, it is Pare's opinion that the mechanism that triggered Appendix B monitoring is an indication of a minor change in MTBE concentration in groundwater beneath the Landfill and not a deterioration in groundwater quality to a degree that suggests the presence of Appendix B parameters in higher-than-usual concentrations.

Future Assessment Monitoring

Pare did not perform Assessment Monitoring at any of the compliance wells during the 2019 period. OW-14 was sampled for sulfides in the March 2019 round, as recommended by the previous annual report, and sulfides were not detected in the sample collected. This marked the second consecutive round in which sulfides were not detected at OW-14, therefore, sulfides monitoring was discontinued for subsequent rounds.

At OW-13, barium exceeded both of its Shewhart-CUSUM control limits, and a Shewhart-CUSUM exceedance this round, and has exceeded its Tolerance Limit for two consecutive rounds, which would trigger Assessment Monitoring. Barium is consistently detected in all the groundwater monitoring wells on-site at concentrations consistent with the recent detection at OW-13. As such, it does not, in Pare's opinion, appear as though this recent detection is a significant change in groundwater quality beneath the landfill, and therefore, Pare does not recommend Assessment Monitoring in March 2020.

5.3 Surface Water Results Data

As previously mentioned, the complete text of the June 2019 quarterly monitoring report, as previously presented to the RIDEM, is provided for reference in Appendix K of this Report. As stated in Section 1.2, this Report serves as the December 2019 Quarterly Monitoring Report in addition to summarizing surface water quality observed throughout the year.

A tabular summary of the laboratory analytical results data for this Report period, by sample location, is provided on Tables 5A through 5H, which includes June 2019 and December 2019 quarterly monitoring data. Analytical results for each well are further summarized in this section.

SW-1

Eight (8) target metals were detected in the surface water sample collected at SW-1. One (1) metal, iron (0.647 mg/L), exceeded is human health threshold (0.3 mg/L). No (0) metals exceeded their aquatic life thresholds. Additionally, total nitrogen and TKN were detected in the samples collected at SW-1; however, they did not exceed their given threshold values, or no threshold values have been established for those parameters.

SW-2

Nine (9) target metals were detected in the surface water sample collected at SW-2. Two (2) metals, lead (0.0006 mg/L) and iron (0.661 mg/L); were detected above their given thresholds. Lead was detected above its chronic aquatic life threshold (0.00029 mg/L), and iron exceeded its human health threshold (0.3 mg/L). Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-2; however, they did not exceed their given threshold values, or no threshold values have been established for those parameters.

SW-3

Eleven (11) target metals were detected in the surface water sample collected at SW-3. One (1) metal, iron (0.788 mg/L), was detected above its human health threshold (0.3 mg/L). No (0) metals exceeded their aquatic life thresholds. Additionally, total nitrogen and TKN were detected in the samples collected at SW-3; however, they did not exceed their given threshold values, or no threshold values have been established for those parameters.

TABLE 5A 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-9

Concentration (Expressed in the same units as Threshold Value)

Concentration (Expressed in the same units as Threshold Value)						
	Threshold	DEC	'19 SEP	19 JUN '19	MAR '19	
<u>Parameter</u>	<u>Value</u>					
Antimony	0.006 mg/l ¹	N		ND	0.0001	
Arsenic	0.010 mg/l ¹	0.00		ND	0.0001	
Barium	2 mg/l ¹	0.0		0.0060	0.0060	
Beryllium	0.004 mg/l ¹	N		0.0001	0.0003	
Cadmium	0.005 mg/l ¹	0.00		0.0001	0.0001	
Chromium	0.1 mg/l'	0.0		0.002	0.0019	
Cobalt	0.73 mg/l ⁵	0.00		ND	0.0003	
Copper	1.3 mg/l ¹	N		ND	ND	
Lead	0.015 mg/l ¹	0.00		0.000	0.0007	
Mercury	0.002 mg/l ²	N		ND	ND	
Nickel	0.1 mg/l ¹	0.0		ND	0.0010	
Selenium	0.05 mg/l ^{2,3}	N		ND	ND	
Silver	0.1 mg/l ¹	N		ND	0.0005	
Thallium	0.002 mg/l ⁵	N		ND	ND	
Tin	22 mg/l ⁵	N		ND	ND	
Vanadium	0.26 mg/l ^{2,3}	0.00		ND	ND	
Zinc	2 - 5 mg/l ¹	0.0		0.0030		
Acetone	5500 μg/L ⁵	N		ND	ND	
Acrylonitrile	0.039 μg/L ⁵	N		ND	ND	
Benzene	5 μg/L ¹	N		ND	ND	
Bromochloromethane	90 μg/L ²	N		ND	ND	
Bromodichloromethane (THM)	80 μg/L¹	N		ND	ND	
Bromoform	80 μg/L ¹	N		ND	ND	
Carbon disulfide	1000 μg/L ⁵	N		ND	ND	
Carbon tetrachloride	5 μg/L¹	N		ND	ND	
Chlorobenzene	100 μg/L ¹	N		ND	ND	
Chloroethane	4.6 μg/L ⁵	N		ND	ND	
Chloroform (THM)	80 μg/L¹	N		ND	ND	
Chlorodibromomethane (THM)	80 μg/L ¹	N		ND	ND	
1,2-Dibromo-3-chloropropane (DBI	0.2 μg/L ¹	N		ND	ND	
1,2-Dibromoethane (EDB)	0.05 μg/L ¹	N		ND	ND	
1,2-Dichlorobenzene	600 μg/L ¹	N		ND	ND	
1,4-Dichlorobenzene	75 μg/L¹	N		ND	ND	
trans-1,4-Dichloro-2-butene	μg/L	N		ND	ND	
1,1 -Dichloroethane	5 μg/L	N		ND	ND	
1,2-Dichloroethane	5 μg/L¹	N		ND	ND	
1,1-Dichloroethylene	7 μg/L¹	N		ND	ND	
cis-1,2-Dichloroethene	70 μg/L ¹	N		ND	ND	
trans-1,2-Dichloroethene	100 μg/L¹	N		ND	ND	
1,2-Dichloropropane	5 μg/L ¹	N		ND	ND	
cis-1,3-Dichloropropene	μg/L	N		ND	ND	
trans-1,3-Dichloropropene	μg/L	N		ND	ND	
Ethylbenzene	700 μg/L ¹	N		ND	ND	
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵	N		ND	ND	
Bromomethane	10 μg/L ²	N		ND	ND	
Chloromethane	30 μg/L ²	N	D NT	ND	ND	
Dibromomethane	61 μg/L ⁵	N		ND	ND	
Methylene chloride	5 μg/L¹	N		ND	ND	
Methyl ethyl ketone(2-Butanone)	4000 μg/L ²	N		ND	ND	
Methyl iodide	μg/L	N		ND	ND	
4-Methyl-2-pentanone	μg/L	N		ND	ND	
Styrene	100 μg/L ¹	N		ND	ND	
1,1,1,2-Tetrachloroethane	70 μg/L ²	N		ND	ND	
1,1,2,2-Tetrachloroethane	0.3 μg/L ²	N		ND	ND	
Tetrachloroethylene(PCE)	5 μg/L ¹	N		ND	ND	
Toluene	1000 μg/L ¹	N		ND	ND	
1,1,1-Trichloroethane	200 μg/L ¹	N		ND	ND	
1,1,2-Trichloroethane	5 μg/L ¹	N		ND	ND	
Trichloroethylene(TCE)	5 μg/L¹	N		ND	ND	
Trichloroflouromethane	2000 μg/L ²	N		ND	ND	
1,2,3-Trichloropropane	40 μg/L ²	N		ND	ND	
Vinyl acetate	410 μg/L ⁵	N		ND	ND	
Vinyl chloride	2 μg/L ¹	N		ND	ND	
Xylenes	10000 μg/L ¹	N		ND	ND	
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	N	D NT	ND	ND	
Note: Analytical data reported since of	commencement of lo	w flow nurging and sampling				

No threshold value has been provided for parameters not identified in the sources listed above

Note: Analytical data reported since commencement of low flow purging and sampling.

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories
4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{5.} Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

TABLE 5B 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-7

Concentration (Expressed in the same units as Threshold Value)

	T 1 1 .11		DEC 140	CED IAO	11.151.140	MADIAO
Parameter	Threshold Value		DEC '19	SEP '19	<u>JUN '19</u>	MAR '19
Antimony	0.006 mg/l ¹		NT	NT	0.0002	0.0002
Arsenic	0.010 mg/l ¹		NT	NT	0.0001	0.0002
Barium	2 mg/l ¹		NT	NT	0.0270	0.0340
Beryllium	0.004 mg/l ¹		NT	NT	ND	ND
Cadmium	0.005 mg/l ¹		NT	NT	0.0005	0.0007
Chromium	0.1 mg/l ¹		NT	NT	0.001	0.0011
Cobalt	0.73 mg/l ⁵		NT	NT	0.0078	0.0090
Copper	1.3 mg/l ¹		NT	NT	0.0020	0.0020
Lead	0.015 mg/l ¹		NT	NT NT	0.001	0.0013
Mercury Nickel	0.002 mg/l ² 0.1 mg/l ¹		NT NT	NT NT	0.0090 ND	0.0110 ND
Selenium	0.05 mg/l ^{2,3}		NT	NT	ND	0.0002
Silver	0.03 mg/l ¹		NT	NT	ND	ND
Thallium	0.002 mg/l ⁵		NT	NT	ND	ND
Tin	22 mg/l ⁵		NT	NT	0.0009	0.0013
Vanadium	0.26 mg/l ^{2,3}		NT	NT	0.0070	0.0060
Zinc	2 - 5 mg/l ¹		NT	NT	0.0140	0.0180
Acetone	5500 μg/L ⁵		NT	NT	ND	ND
Acrylonitrile	0.039 μg/L ⁵		NT	NT	ND	ND
Benzene	5 μg/L ¹		NT	NT	ND	ND
Bromochloromethane	90 μg/L ²		NT	NT	ND	ND
Bromodichloromethane (THM)	80 μg/L ¹		NT	NT	ND	ND
Bromoform	80 μg/L ¹		NT NT	NT NT	ND ND	ND
Carbon disulfide Carbon tetrachloride	1000 μg/L ⁵ 5 μg/L ¹		NT NT	NT NT	ND ND	ND ND
Chlorobenzene	5 μg/L 100 μg/L ¹		NT	NT	ND	ND ND
Chloroethane	4.6 μg/L ⁵		NT	NT	ND	ND
Chloroform (THM)	80 μg/L ¹		NT	NT	ND	ND
Chlorodibromomethane (THM)	80 μg/L ¹		NT	NT	ND	ND
1,2-Dibromo-3-chloropropane (DBC	0.2 μg/L ¹		NT	NT	ND	ND
1,2-Dibromoethane (EDB)	0.05 μg/L ¹		NT	NT	ND	ND
1,2-Dichlorobenzene	600 μg/L ¹		NT	NT	ND	ND
1,4-Dichlorobenzene	75 μg/L ¹		NT	NT	ND	ND
trans-1,4-Dichloro-2-butene	μg/L		NT	NT	ND	ND
1,1 -Dichloroethane	5 μg/L		NT	NT	ND	ND
1,2-Dichloroethane	5 μg/L ¹		NT NT	NT NT	ND ND	ND ND
1,1-Dichloroethylene cis-1,2-Dichloroethene	7 μg/L ¹ 70 μg/L ¹		NT NT	NT NT	ND ND	ND ND
trans-1,2-Dichloroethene	70 μg/L 100 μg/L ¹		NT	NT	ND ND	ND ND
1,2-Dichloropropane	5 μg/L ¹		NT	NT	ND	ND
cis-1,3-Dichloropropene	μg/L		NT	NT	ND	ND
trans-1,3-Dichloropropene	μg/L		NT	NT	ND	ND
Ethylbenzene	700 μg/L ¹		NT	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵		NT	NT	ND	ND
Bromomethane	10 μg/L ²		NT	NT	ND	ND
Chloromethane	30 μg/L ²		NT	NT	ND	ND
Dibromomethane	61 μg/L ⁵		NT	NT	ND	ND
Methylene chloride	5 μg/L ¹		NT	NT	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L ²		NT NT	NT NT	ND ND	ND ND
Methyl iodide 4-Methyl-2-pentanone	μg/L μg/L		NT	NT	ND	ND ND
Styrene	μg/L 100 μg/L ¹		NT	NT	ND	ND
1,1,1,2-Tetrachloroethane	70 μg/L ²		NT	NT	ND	ND
1,1,2,2-Tetrachloroethane	0.3 μg/L ²		NT	NT	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ¹		NT	NT	ND	ND
Toluene	1000 μg/L ¹		NT	NT	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹		NT	NT	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹		NT	NT	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹		NT	NT	ND	ND
Trichloroflouromethane	2000 μg/L ²		NT	NT	ND	ND
1,2,3-Trichloropropane	40 μg/L ²		NT	NT	ND	ND
Vinyl acetate	410 μg/L ⁵		NT	NT	ND	ND
Vinyl chloride	2 μg/L ¹		NT	NT	ND	ND
Xylenes	10000 μg/L ¹		NT NT	NT	ND	ND 4.00
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	I	IN I	NT	3.01	4.00

No threshold value has been provided for parameters not identified in the sources listed above

Note: Analytical data reported since commencement of low flow purging and sampling.

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories

4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

TABLE 5C 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-12

Concentration (Expressed in Same units as Threshold Value)

		, ,				,
	Threshold	<u>]</u>	DEC '19	SEP '19	JUN '19	MAR '19
<u>Parameter</u>	<u>Value</u>					
Antimony	0.006 mg/L ¹		ND	NT	ND	ND
Arsenic	0.010 mg/L ¹		ND	NT	ND	ND
Barium	2 mg/L ¹		0.023	NT	0.02	0.0200
Beryllium	0.004 mg/L ¹		ND	NT	ND	ND
Cadmium	0.005 mg/L ¹		0.0004	NT	0.0004	ND
Chromium	0.1 mg/L ¹		0.0001	NT	ND	ND
Cobalt	0.73 mg/L ⁵		0.001	NT	0.0005	ND
Copper	1.3 mg/L ¹		ND	NT	ND	0.0090
Lead	0.015 mg/L ¹		0.0003	NT	ND	ND
Mercury	0.002 mg/L ¹		ND	NT	ND	ND
Nickel	0.1 mg/L ²		0.01	NT	0.01	0.0240
Selenium	0.05 mg/L ¹ 0.1 mg/L ^{2,3}		ND	NT	ND	ND
Silver Thallium	0.1 mg/L 1		ND ND	NT NT	0.003 ND	ND ND
Tin	22 mg/L ⁵		ND	NT	ND	ND
****	0.26 mg/L ⁵			NT	ND	ND ND
Vanadium Zinc	2 - 5 mg/L ^{2,3}		ND ND	NT	ND	0.0070
Acetone	610 μg/L ⁵		ND	NT	ND	ND
Acrylonitrile	0.039 μg/L ⁵		ND	NT	ND	ND
Benzene	5 μg/L ¹		ND	NT	ND	ND
Bromochloromethane	80 μg/L ²		ND	NT	ND	ND
Bromodichloromethane (THM)	90 μg/L ¹		ND	NT	ND	ND
Bromoform	80 μg/L ¹		ND	NT	ND	ND
Carbon disulfide	1000 μg/L ⁵		ND	NT	ND	ND
Carbon tetrachloride	5 μg/L ¹		ND	NT	ND	ND
Chlorobenzene	100 μg/L ¹		ND	NT	ND	ND
Chloroethane	4.6 μg/L ⁵		ND	NT	ND	ND
Chloroform	80 μg/L ¹		ND	NT	ND	ND
Chlorodibromomethane (THM)	80 μg/L ¹		ND	NT	ND	ND
1,2-Dibromo-3-chloropropane (DBC	0.2 μg/L ¹		ND	NT	ND	ND
1,2-Dibromoethane (EDB)	0.05 μg/L ¹		ND	NT	ND	ND
1,2-Dichlorobenzene	600 μg/L ¹		ND	NT	ND	ND
1,4-Dichlorobenzene	75 μg/L ¹		ND	NT	ND	ND
trans-1,4-Dichloro-2-butene	μg/L		ND	NT	ND	ND
1,1 -Dichloroethane	5 μg/L		ND	NT	ND	ND
1,2-Dichloroethane	μg/L		ND	NT	ND	ND
1,1-Dichloroethylene	7 μg/L ¹		ND	NT	ND	ND
cis-1,2-Dichloroethene	70 μg/L ¹		ND	NT	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹		ND	NT	ND	ND
1,2-Dichloropropane	5 μg/L ¹		ND	NT	ND	ND
cis-1,3-Dichloropropene	μg/L		ND	NT	ND	ND
trans-1,3-Dichloropropene	μg/L		ND	NT	ND	ND
Ethylbenzene	700 μg/L ¹		ND	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵		ND	NT	ND	ND
Bromomethane	10 μg/L ²		ND	NT	ND	ND
Chloromethane	30 μg/L ²		ND	NT	ND	ND
Dibromomethane	61 μg/L ⁵		ND	NT	ND	ND
Methylene chloride	5 μg/L ¹		ND	NT NT	ND ND	ND ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L ²		ND			
Methyl iodide	μg/L		ND ND	NT NT	ND ND	ND ND
4-Methyl-2-pentanone Styrene	μg/L 100 μg/L ¹		ND	NT	ND	ND
1,1,1,2-Tetrachloroethane	70 μg/L		ND	NT	ND	ND
1,1,2,2-Tetrachloroethane	70 μg/L 0.3 μg/L ²		ND	NT	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ¹		ND	NT	ND	ND
Toluene	1000 μg/L ¹		ND	NT	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹		ND	NT	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹		ND	NT	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹		ND	NT	ND	ND
Trichloroflouromethane	2000 μg/L ²		ND	NT	ND	ND
1,2,3-Trichloropropane	40 μg/L ²		ND	NT	ND	ND
Vinyl acetate	410 μg/L ⁵		ND	NT	ND	ND
Vinyl chloride	2 μg/L ¹		ND	NT	ND	ND
Xylenes	10000 μg/L ¹		ND	NT	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴		ND	NT	ND	ND
Note: Applytical data reported since a		flow purging and compling				

- Note: Analytical data reported since commencement of low flow purging and sampling.

 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories
 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significan higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect. No threshold value has been provided for parameters not identified in the sources listed above

Note: Dichlorodifluoromethane is not an Appendix A VOC but was reported by the laboratory and has been included in this table.

TABLE 5D 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-13

Concentration (Expressed in same units as Threshold Value)

	Threshold	DEC '19	SEP '19	JUN '19	MAR '19
Parameter	<u>Value</u>				
Antimony	0.006 mg/L ¹	ND	NT	ND	ND
Arsenic	0.010 mg/L ¹	0.0104	NT	0.01	0.0081
Barium	2 mg/L ¹	0.1220	NT	0.096	0.1180
Beryllium	0.004 mg/L ¹	ND	NT	ND	ND
Cadmium	0.005 mg/L ¹	8000.0	NT	0.0007	0.0004
Chromium	0.1 mg/L ¹	0.0004	NT	0.0007	0.0004
Cobalt	0.73 mg/L ⁵	0.0105	NT	0.0111	0.0112
Copper	1.3 mg/L ¹	0.004	NT	0.003	0.004
ead	0.015 mg/L ¹	0.0007	NT	0.0005	0.0008
Mercury	0.002 mg/L ¹	ND	NT	ND	ND
lickel	0.1 mg/L ²	0.0100	NT	0.011	0.011
Selenium	0.05 mg/L ¹	ND	NT	ND	ND
Silver	0.1 mg/L ^{2,1}	ND	NT	ND	ND
hallium	0.002 mg/L ¹	ND	NT	ND	ND
in	22 mg/L ⁵	ND	NT	ND	ND
anadium	0.26 mg/L ⁵	ND.	NT	ND	ND
inc	2 - 5 mg/L ^{2,1}	0.009	NT	0.007	0.005
inc acetone	2 - 5 mg/L 610 μg/L ⁵	0.009 ND	NT	16.88	0.005 ND
	610 μg/L ⁵	ND ND	NT NT	16.88 ND	ND ND
crylonitrile					
lenzene	5 μg/L ¹	ND	NT	ND	ND
Bromochloromethane	80 μg/L ²	ND	NT	ND	ND
Bromodichloromethane (THM)	90 μg/L ¹	ND	NT	ND	ND
Fromoform	80 μg/L ¹	ND	NT	ND	ND
arbon disulfide	1000 μg/L ⁵	ND	NT	ND	ND
Carbon tetrachloride	5 μg/L ¹	ND	NT	ND	ND
Chlorobenzene	100 μg/L ¹	5.31	NT	4.1	5.9
Chloroethane	4.6 μg/L ⁵	ND	NT	ND	ND
Chloroform	80 μg/L ¹	ND	NT	ND	ND
Chlorodibromomethane (THM)	80 μg/L ¹	ND	NT	ND	ND
,2-Dibromo-3-chloropropane (DB	0.2 μg/L ¹	ND	NT	ND	ND
,2-Dibromoethane (EDB)	0.05 μg/L ¹	ND	NT	ND	ND
,2-Dichlorobenzene	600 μg/L ¹	ND	NT	ND	ND
,4-Dichlorobenzene	75 μg/L ¹	1.13	NT	ND	ND
ans-1,4-Dichloro-2-butene	μg/L	ND	NT	ND	ND
,1 -Dichloroethane	μg/L 5 μg/L	ND	NT	ND	ND
,2-Dichloroethane		ND	NT	ND	ND
	μg/L 7 μg/L ¹	ND ND	NT	ND	ND
,1-Dichloroethylene					
sis-1,2-Dichloroethene	70 μg/L ¹	ND	NT	ND	ND
rans-1,2-Dichloroethene	100 μg/L ¹	ND	NT	ND	ND
,2-Dichloropropane	5 μg/L ¹	ND	NT	ND	ND
is-1,3-Dichloropropene	μg/L	ND	NT	ND	ND
ans-1,3-Dichloropropene	μg/L	ND	NT	ND	ND
thylbenzene	700 μg/L ¹	ND	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵	ND	NT	ND	ND
romomethane	10 μg/L ²	ND	NT	ND	ND
hloromethane	30 μg/L ²	ND	NT	ND	ND
ibromomethane	61 μg/L ⁵	ND	NT	ND	ND
lethylene chloride	5 μg/L ¹	ND	NT	ND	ND
fethyl ethyl ketone(2-Butanone)	4000 μg/L ²	ND	NT	ND	ND
lethyl iodide	μg/L	ND	NT	ND	ND
-Methyl-2-pentanone	μg/L	ND	NT	ND	ND
tvrene	μg/L 100 μg/L ¹	ND ND	NT	ND	ND
,1,1,2-Tetrachloroethane	70 μg/L ²	ND ND	NT	ND	ND
	70 μg/L 0.3 μg/L ²	ND ND	NT NT	ND	ND ND
,1,2,2-Tetrachloroethane			NT NT		ND ND
etrachloroethylene(PCE)	5 μg/L¹	ND		ND	
oluene	1000 μg/L ¹	ND	NT	ND	ND
1,1-Trichloroethane	200 μg/L ¹	ND	NT	ND	ND
,1,2-Trichloroethane	5 μg/L ¹	ND	NT	ND	ND
richloroethylene(TCE)	5 μg/L ¹	ND	NT	ND	ND
richloroflouromethane	2000 μg/L ²	ND	NT	ND	ND
,2,3-Trichloropropane	40 μg/L ²	ND	NT	ND	ND
'inyl acetate	410 μg/L ⁵	ND	NT	ND	ND
/inyl chloride	2 μg/L ¹	ND	NT	ND	ND
(ylenes	10000 μg/L ¹	ND	NT	ND	ND

No threshold value has been provided for parameters not identified in the sources listed above

Note: Dichlorodifluoromethane is not an Appendix A VOC but was reported by the laboratory and has been included in this table.

Methyl tert-butyl ether (MTBE) 20 - 40 µg/L* 3.35 NT 3.3 3.4

Note: Analytical data reported since commencement of low flow purging and smapling.

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

2. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories

4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher the concentration was reported above its laboratory method detection limit, but lower than its laboratory than bits laboratory reporting limit and historical reporting limit. previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

TABLE 5E 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-14

Concentration (Expressed in the same units as Threshold Value)

	Conce	shittation (Expressed in the se	inic units at	3 11110311010	value)
	Threshold	DEC '19	SEP '19	JUN '19	MAR '19
<u>Parameter</u>	<u>Value</u>				
Antimony	0.006 mg/L ¹	0.0002	NT	0.0001	0.0001
Arsenic	0.010 mg/L ¹	0.0004	NT	0.0036	0.0018
Barium	2 mg/L ¹	0.168	NT	0.199	0.2020
Beryllium Cadmium	0.004 mg/L ¹ 0.005 mg/L ¹	ND 0.0002	NT NT	ND ND	ND ND
Chromium	0.005 mg/L	0.0002	NT NT	0.0006	0.0007
Cobalt	0.73 mg/L ⁵	0.003	NT	0.0058	0.0059
Copper	1.3 mg/L ¹	0.004	NT	ND	ND
Lead	0.015 mg/L ¹	0.001	NT	0.0002	0.0010
Mercury	0.002 mg/L ¹	ND	NT	ND	ND
Nickel	0.1 mg/L ²	0.007	NT	0.011	0.0110
Selenium	0.05 mg/L ¹	ND	NT	ND	ND
Silver	0.1 mg/L ^{2,5}	ND	NT	ND	0.0002
Thallium	0.002 mg/L ¹	ND	NT	ND	ND
Tin	22 mg/L⁵	ND	NT	ND	ND
Vanadium	0.26 mg/L ⁵	ND	NT	0.0006	0.0007
Zinc	2 - 5 mg/L ^{2,5}	0.004	NT	0.005	0.0040
Acetone	610 μg/L ⁵	ND	NT	20.96	ND
Acrylonitrile Benzene	0.039 μg/L ⁵ 5 μg/L ¹	ND 1.56	NT NT	ND 2.24	ND 2.1
Bromochloromethane	5 μg/L 80 μg/L ²	ND	NT NT	2.24 ND	Z. I ND
Bromodichloromethane (THM)	90 μg/L ¹	ND ND	NT NT	ND ND	ND
Bromoform	90 μg/L ¹	ND ND	NT	ND	ND
Carbon disulfide	1000 μg/L ⁵	ND	NT	ND	ND
Carbon tetrachloride	5 μg/L ¹	ND	NT	ND	ND
Chlorobenzene	100 μg/L ¹	8.85	NT	10.74	10.8
Chloroethane	4.6 μg/L ⁵	ND	NT	ND	ND
Chloroform	80 μg/L ¹	ND	NT	ND	ND
Chlorodibromomethane (THM)	80 μg/L ¹	ND	NT	ND	ND
1,2-Dibromo-3-chloropropane (DB0	0.2 μg/L ¹	ND	NT	ND	ND
1,2-Dibromoethane (EDB)	0.05 μg/L ¹	ND	NT	ND	ND
1,2-Dichlorobenzene	600 μg/L ¹	ND	NT	ND	ND
1,4-Dichlorobenzene	75 μg/L¹	2.02	NT	2.04	2.1
trans-1,4-Dichloro-2-butene	μg/L	ND	NT	ND	ND
1,1 -Dichloroethane	5 μg/L	ND	NT	ND	ND
1,2-Dichloroethane 1,1-Dichloroethylene	μg/L 7 μg/L ¹	ND ND	NT NT	ND ND	ND ND
cis-1,2-Dichloroethene	7 μg/L 70 μg/L ¹	ND ND	NT	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹	ND	NT	ND	ND
1,2-Dichloropropane	5 μg/L ¹	ND	NT	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	NT	ND	ND
trans-1,3-Dichloropropene	μg/L	ND	NT	ND	ND
Ethylbenzene	700 μg/L ¹	ND	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵	ND	NT	ND	ND
Bromomethane	10 μg/L ²	ND	NT	ND	ND
Chloromethane	30 μg/L ²	ND	NT	ND	ND
Dibromomethane	61 μg/L ⁵	ND	NT	ND	ND
Methylene chloride	5 μg/L ¹	ND ND	NT NT	ND ND	ND ND
Methyl ethyl ketone(2-Butanone) Methyl iodide	4000 μg/L² μg/L	ND ND	NT	ND ND	ND
4-Methyl-2-pentanone	μg/L	ND ND	NT	ND	ND
Styrene	100 μg/L ¹	ND	NT	ND	ND
1.1.1.2-Tetrachloroethane	70 μg/L ²	ND	NT	ND	ND
1,1,2,2-Tetrachloroethane	0.3 μg/L ²	ND	NT	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ¹	ND	NT	ND	ND
Toluene	1000 μg/L ¹	ND	NT	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹	ND	NT	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹	ND	NT	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹	ND	NT	ND	ND
Trichloroflouromethane	2000 μg/L ²	ND	NT	ND	ND
1,2,3-Trichloropropane	40 μg/L ²	ND	NT	ND	ND
Vinyl acetate	410 μg/L ⁵	ND	NT	ND	ND
Vinyl chloride Xylenes	2 μg/L ¹ 10000 μg/L ¹	ND ND	NT NT	ND ND	ND ND
•	10000 μg/L 20 - 40 μg/L ⁴	ND 5.4	NT NT	ND 5.07	5.0
Methyl tert-butyl ether (MTBE)			INI	0.07	5.0

Note: Analytic aldata reported since commencement of low flow purging and smapling.

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories.

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{3.} Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories
4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

^{6.} Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significa higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect. No threshold value has been provided for parameters not identified in the sources listed above

TABLE 5F 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-15

Concentration (Expressed in the same units as Threshold Value)

	Threshold	D	EC '19	SEP '19	JUN '19	MAR '19
<u>Parameter</u>	<u>Value</u>	<u> </u>				
Antimony	0.006 mg/L ¹		ND	NT	ND	ND
Arsenic	0.010 mg/L ¹	0	0.0150	NT	0.02	0.0352
Barium	2 mg/L ¹		0.151	NT	0.148	0.158
Beryllium	0.004 mg/L ¹		ND	NT	ND	ND
Cadmium	0.005 mg/L ¹		ND	NT	ND	ND
Chromium	0.1 mg/L ¹		0.0010	NT	0.0009	0.0007
Cobalt	0.73 mg/L ⁵	-	0.0066	NT	0.0124	0.0126
Copper	1.3 mg/L ¹		0.0030	NT	ND	ND
Lead	0.015 mg/L ¹	0	0.0003	NT	0.0003	0.0003
Mercury	0.002 mg/L ¹		ND	NT	ND	ND
Nickel	0.1 mg/L ²	•	0.016	NT	0.025	0.025
Selenium	0.05 mg/L ¹		ND	NT	ND	ND
Silver	0.1 mg/L ² ,	•	ND	NT	ND	0.0001
Thallium	0.002 mg/L ¹		ND	NT	ND	ND
Tin	22 mg/L ⁵		ND	NT	ND	ND
Vanadium	0.26 mg/L ⁵		0.0006	NT	0.0007	0.0010
Zinc	2 - 5 mg/L ^{2,}		0.0100	NT	0.0040	0.0030
Acetone	610 μg/L ⁵		ND	NT	19.19	ND
Acrylonitrile	0.039 μg/L ⁵		ND	NT	ND	ND
Benzene	5 μg/L ¹		1.9	NT	1.94	1.5
Bromochloromethane	80 μg/L ²		ND	NT	ND	ND
Bromodichloromethane (THM)	90 μg/L ¹		ND	NT	ND	ND
Bromoform	80 μg/L ¹		ND	NT	ND	ND
Carbon disulfide	1000 μg/L ⁵		ND	NT	ND	ND
Carbon tetrachloride	5 μg/L ¹ 100 μg/L ¹		ND	NT NT	ND 14.4	ND
Chlorobenzene	100 μg/L 4.6 μg/L ⁵		16.99 ND	NT NT	14.4 ND	13.2 ND
Chloroethane Chloroform			ND	NT NT	ND ND	ND ND
Chlorodibromomethane (THM)	80 μg/L ¹ 80 μg/L ¹		ND ND	NT NT	ND ND	ND ND
	80 μg/L 0.2 μg/L ¹			NT		ND
1,2-Dibromo-3-chloropropane (DBC	0.2 μg/L 0.05 μg/L ¹		ND ND	NT	ND ND	ND
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	0.05 μg/L 600 μg/L ¹		ND	NT	ND	ND ND
1,4-Dichlorobenzene	75 μg/L ¹		2.69	NT	2.64	2.1
trans-1,4-Dichloro-2-butene	75 μg/L μg/L		2.69 ND	NT	ND	ND
1,1 -Dichloroethane	μg/L 5 μg/L		ND	NT	ND	ND
1,2-Dichloroethane	5 μg/L μg/L		ND	NT	ND	ND
1,1-Dichloroethylene	μg/L ¹		ND	NT	ND	ND
cis-1,2-Dichloroethene	70 μg/L ¹		ND	NT	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹		ND	NT	ND	ND
1,2-Dichloropropane	5 μg/L ¹		ND	NT	ND	ND
cis-1,3-Dichloropropene	μg/L		ND	NT	ND	ND
trans-1,3-Dichloropropene	μg/L		ND	NT	ND	ND
Ethylbenzene	700 μg/L ¹		ND	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L ⁵		ND	NT	ND	ND
Bromomethane	10 μg/L ²		ND	NT	ND	ND
Chloromethane	30 μg/L ²		ND	NT	ND	ND
Dibromomethane	61 μg/L ⁵		ND	NT	ND	ND
Methylene chloride	5 μg/L ¹		ND	NT	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L ²		ND	NT	ND	ND
Methyl iodide	μg/L		ND	NT	ND	ND
4-Methyl-2-pentanone	μg/L		ND	NT	ND	ND
Styrene	100 μg/L ¹		ND	NT	ND	ND
1,1,1,2-Tetrachloroethane	70 μg/L ²		ND	NT	ND	ND
1,1,2,2-Tetrachloroethane	0.3 μg/L ²		ND	NT	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ¹		ND	NT	ND	ND
Toluene	1000 μg/L ¹		ND	NT	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹		ND	NT	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹		ND	NT	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹		ND	NT	ND	ND
Trichloroflouromethane	2000 μg/L ²		ND	NT	ND	ND
1,2,3-Trichloropropane	40 μg/L ²		ND	NT	ND	ND
Vinyl acetate	410 μg/L ⁵		ND	NT	ND	ND
Vinyl chloride	2 μg/L ¹		ND	NT	ND	ND
Xylenes	10000 μg/L ¹		ND	NT	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴		3.67	NT	9.38	7.5
Note: A colored late considerations		I				

- Note: Analytical data reported since commencement of low flow purging and smapling.

 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories.
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories
 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 5G 2019 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A- CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-16

Concentration (Expressed in the same units as Threshold Value)

Threshold Yalue Antimony 0.006 mgh NT NT ND ND Antimony 0.006 mgh NT NT ND ND ND Antimony 0.006 mgh NT NT ND ND ND ND ND ND			()				,
Asteninomy				DEC '19	SEP '19	<u>JUN '19</u>	MAR '19
Assence				NT	NT	ND	ND
Barlum							
Beyllium							
Cadmium 0.005 mg/l² NT NT 0.0002 0.003 Chromium 0.1 mg/l² NT NT NT ND ND Cobalt 0.73 mg/l² NT NT NT ND ND Copper 1.3 mg/l² NT NT NT ND ND Mercury 0.002 mg/l² NT NT NT ND ND Nickel 0.1 mg/l² NT NT NT 0.002 0.0020 Selenium 0.05 mg/l² NT NT NT ND 0.002 Silver 0.1 mg/l² NT NT NT ND 0.002 Silver 0.1 mg/l² NT NT NT ND 0.002 Silver 0.1 mg/l² NT NT NT ND 0.000 Silver 0.1 mg/l² NT NT NT ND 0.000 Silver 0.1 mg/l² NT NT NT NT							
Chromium 0.1 mg/l² NT NT ND	. , .						
Cobalt 0.73 mg/l ³ NT NT 0.0009 0.0089 Copper 1.3 mg/l ³ NT NT NT ND ND Lead 0.015 mg/l ³ NT NT NT ND ND Mercury 0.002 mg/l ³ NT NT NT ND ND Nickel 0.1 mg/l ³ NT NT ND ND ND Selenium 0.05 mg/l ³ NT NT NT ND 0.0001 Slever 0.1 mg/l ³ NT NT ND 0.0001 Thallium 0.002 mg/l ³ NT NT ND ND Vanadium 0.26 mg/l ² NT NT ND ND Vanadium 0.28 mg/l ² NT NT NT ND ND Zhoc 2.5 mg/l ² NT NT NT ND ND Acetone 5500 µg/l ² NT NT NT ND ND Bronc	Chromium			NT	NT		
Copper 1.3 mg/l ¹ NT NT ND ND Lead 0.015 mg/l ¹ NT NT NT ND ND Mercury 0.002 mg/l ² NT NT NT ND ND Nickel 0.1 mg/l ¹ NT NT NT ND ND Silver 0.1 mg/l ¹ NT NT NT ND 0.000 Thallium 0.002 mg/l ² NT NT NT ND 0.000 Tanalium 0.22 mg/l ² NT NT NT ND ND Vanadium 0.26 mg/l ² NT NT NT ND ND Vanadium 0.26 mg/l ² NT NT NT ND ND Zinc 2. 5 mg/l ² NT NT NT ND ND Acetone 5500 µg/l ² NT NT NT ND ND Benzene 5 µg/l ² NT NT NT ND							
Lead 0.015 mg/l² NT NT ND ND Nickel 0.1 mg/l² NT NT NT ND ND Selenium 0.05 mg/l²³ NT NT NT ND ND Selenium 0.05 mg/l²³ NT NT NT ND ND Silver 0.1 mg/l²³ NT NT NT ND 0.0001 Thallium 0.052 mg/l²³ NT NT NT ND ND Tin 2 mg/l²³ NT NT NT ND ND Vanadium 0.28 mg/l²³ NT NT NT ND ND Zence 5 mg/l² NT NT NT ND ND Acetone 5500 μg/l² NT NT NT ND ND Berzene 5 mg/l² NT NT NT ND ND Berzene 5 mg/l² NT NT NT ND ND	Copper			NT	NT	ND	ND
Nickel 0.1 mgfl¹ NT NT 0.002 0.0020 Selenium 0.05 mgfl²³ NT NT NT ND ND Silver 0.1 mgfl¹ NT NT NT ND 0.0001 Thallium 0.002 mgfl² NT NT NT ND ND Tin 2 mgfl² NT NT NT ND ND Vanadium 0.26 mgfl²³ NT NT NT ND ND Vanadium 0.26 mgfl² NT NT NT ND ND Vanadium 0.28 mgfl² NT NT NT ND ND Vanadium 0.29 mgfl² NT NT NT ND ND Vanadium 0.39 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae NT NT NT NT ND ND Valencharae NT NT NT ND ND Valencharae NT NT NT NT ND ND Valencharae NT NT NT ND ND Valencharae NT NT NT NT ND ND	Lead			NT	NT	ND	ND
Nickel 0.1 mgfl¹ NT NT 0.002 0.0020 Selenium 0.05 mgfl²³ NT NT NT ND ND Silver 0.1 mgfl¹ NT NT NT ND 0.0001 Thallium 0.002 mgfl² NT NT NT ND ND Tin 2 mgfl² NT NT NT ND ND Vanadium 0.26 mgfl²³ NT NT NT ND ND Vanadium 0.26 mgfl² NT NT NT ND ND Vanadium 0.28 mgfl² NT NT NT ND ND Vanadium 0.29 mgfl² NT NT NT ND ND Vanadium 0.39 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae (THM) 80 mgl² NT NT NT ND ND Valencharae NT NT NT NT ND ND Valencharae NT NT NT ND ND Valencharae NT NT NT NT ND ND Valencharae NT NT NT ND ND Valencharae NT NT NT NT ND ND	Mercury	0.002 mg/l ²		NT	NT	ND	ND
Silver	Nickel			NT	NT	0.002	0.0020
Thaillium	Selenium			NT	NT	ND	ND
Tin	Silver	0.1 mg/l ¹		NT	NT	ND	0.0001
Vanadium	Thallium	0.002 mg/l ⁵		NT	NT	ND	ND
Zinc	Tin			NT	NT	ND	ND
Acetone 5500 μg/L ⁵ NT NT ND ND Acrylonitrile 0.039 μg/L ⁵ NT NT NT ND ND Benzene 5 μg/L ¹ NT NT NT ND ND Bromochloromethane (THM) 80 μg/L ¹ NT NT NT ND ND Bromodrim 80 μg/L ¹ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT ND ND Carbon disulfide 1000 μg/L ⁵ NT NT NT NT ND ND ND ND ND		0.26 mg/l ^{2,3}					
Acrylonitrile 0.039 μg/L² NT NT ND ND Benzene 5 μg/L¹ NT NT NT ND ND Bromodichloromethane 90 μg/L² NT NT NT ND ND Bromodichloromethane (THM) 80 μg/L¹ NT NT NT ND ND Bromoform 80 μg/L² NT NT NT ND ND Carbon disulfide 1000 μg/L² NT NT NT ND ND Carbon disulfide 1000 μg/L² NT NT NT ND ND Carbon disulfide 100 μg/L² NT NT NT ND ND Carbon disulfide 100 μg/L² NT NT NT ND ND Carbon disulfide 100 μg/L² NT NT NT ND ND Chlorodizene 4.6 μg/L² NT NT NT ND ND Chlorodizene 6.0 μg/L² NT	Zinc			NT	NT	0.004	0.004
Benzene 5 μg/L NT NT ND ND Bromochloromethane 90 μg/L NT NT ND ND Bromochloromethane (THM) 80 μg/L NT NT ND ND Bromochloromethane (THM) 80 μg/L NT NT ND ND Bromoch disulfide 1000 μg/L NT NT ND ND Carbon disulfide 1000 μg/L NT NT ND ND Carbon disulfide 1000 μg/L NT NT ND ND Chlorobenzene 100 μg/L NT NT ND ND Chlorobenzene 100 μg/L NT NT ND ND Chlorotethane 4.6 μg/L NT NT ND ND Chlorotethane 4.6 μg/L NT NT ND ND Chlorotethane (THM) 80 μg/L NT NT ND ND Chlorodibromomethane (THM) 80 μg/L NT NT ND ND Chlorotethane (EDB) 0.05 μg/L NT NT ND ND 1,2-Dibromo-3-chloropropane (DBC 0.2 μg/L NT NT ND ND 1,4-Dichlorobenzene 75 μg/L NT NT ND ND 1,4-Dichlorocebhane 5 μg/L NT NT ND ND 1,1-Dichlorocebhane 5 μg/L NT NT ND ND 1,1-Dichlorocethane 5 μg/L NT NT ND ND 1,1-Dichlorocethane 70 μg/L NT NT ND ND 1,1-Dichlorophyene μg/L NT NT ND ND Cis-1,2-Dichloropopane μg/L NT NT ND ND Cis-1,3-Dichloropropene μg/L NT NT ND ND Methyl butyl ketone(2-Hexanone) 160 μg/L NT NT ND ND Dibromomethane 10 μg/L NT NT ND ND Methyl butyl ketone(2-Hexanone) 160 μg/L NT NT ND ND Methyl enchloride μg/L NT NT ND ND Dibromomethane 10 μg/L NT NT ND ND Methyl enchloride μg/L NT NT ND ND Methyl enchloride μg/L NT NT ND ND ND ND ND ND ND ND ND							
Bromochloromethane	•						
Bromodichloromethane (THM) 80 μg/L¹ NT NT ND ND Bromoform 80 μg/L² NT NT NT ND ND Carbon disulfide 1000 μg/L² NT NT NT ND ND Carbon tetrachloride 5 μg/L² NT NT NT ND ND Chloroelenzene 100 μg/L² NT NT NT ND ND Chloroelfane 4.6 μg/L² NT NT NT ND ND Chloroelfane 4.6 μg/L² NT NT NT ND ND Chloroelfane 4.6 μg/L² NT NT NT ND ND Chloroelfane 6.0 μg/L² NT NT NT ND ND 1,2-Dichloroebrane 6.00 μg/L² NT NT NT ND ND 1,2-Dichloroebrane 7.5 μg/L² NT NT NT ND ND 1,1-Dichloroebrane 5. μg/L² NT							
Bromoform 80 μg/L NT NT NT ND ND ND Carbon disulfide 1000 μg/L NT NT NT ND ND ND ND Carbon tetrachloride 5 μg/L NT NT NT ND ND ND ND ND ND ND							
Carbon disulfide 1000 μg/L ⁵ NT NT ND ND Carbon tetrachloride 5 μg/L ¹ NT NT ND ND Chlorobenzene 100 μg/L ¹ NT NT NT ND ND Chloroform (THM) 80 μg/L ¹ NT NT NT ND ND Chlorodibromomethane (THM) 80 μg/L ¹ NT NT NT ND ND Chlorodibromomethane (EDB) 0.05 μg/L ¹ NT NT NT ND ND 1,2-Dibromo-2-schloropropane (DBK) 0.2 μg/L ¹ NT NT NT ND ND 1,2-Dichlorobenzene 600 μg/L ¹ NT NT NT ND ND 1,2-Dichlorobenzene 75 μg/L NT NT NT ND ND 1,4-Dichlorobenzene 75 μg/L NT NT NT ND ND 1,4-Dichlorobenzene 79 μg/L NT NT NT ND ND 1,1-Dichlorobenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Carbon tetrachloride 5 μg/L¹ NT NT ND ND Chlorobenzene 100 μg/L¹ NT NT ND ND Chlorothane 4.6 μg/L⁵ NT NT NT ND ND Chlorodbromomethane (THM) 80 μg/L¹ NT NT NT ND ND Chlorodbromomethane (EDB) 0.2 μg/L¹ NT NT NT ND ND 1,2-Dibromo-schloropropane (DBI 0.2 μg/L¹ NT NT NT ND ND 1,2-Dibromo-schloropropane (DBI 0.05 μg/L¹ NT NT NT ND ND 1,2-Dibromoethane (EDB) 0.05 μg/L¹ NT NT NT ND ND 1,4-Dichloroethane (EDB) 0.05 μg/L¹ NT NT NT ND ND 1,4-Dichloroethane 75 μg/L¹ NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Chlorobenzene 100 μg/L¹ NT NT ND ND Chloroethane 4.6 μg/L⁵ NT NT ND ND Chloroform (THM) 80 μg/L¹ NT NT NT ND ND Chlorodibromomethane (THM) 80 μg/L¹ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (DBK) 0.2 μg/L¹ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (BDB) 0.05 μg/L¹ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (BDB) 0.05 μg/L¹ NT NT NT ND ND 1,2-Dichlorobenzene 600 μg/L¹ NT NT NT ND ND 1,4-Dichlorobenzene 75 μg/L¹ NT NT NT ND ND 1,4-Dichlorochene 5 μg/L¹ NT NT NT ND ND 1,2-Dichlorochene 7 μg/L¹ NT NT NT ND ND 1,2-Dichlorochene							
Chloroethane 4.6 μg/L³ NT NT ND ND Chloroform (THM) 80 μg/L³ NT NT ND ND Chlorodibromomethane (THM) 80 μg/L³ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (DBK) 0.2 μg/L³ NT NT NT ND ND 1,2-Diblorobenzene 600 μg/L³ NT NT NT ND ND 1,2-Dichlorobenzene 600 μg/L³ NT NT NT ND ND 1,2-Dichlorobenzene 19g/L³ NT NT ND ND 1,4-Dichlorobenzene 19g/L³ NT NT ND ND 1,1-Dichlorobenzene 5 μg/L³ NT NT ND ND 1,1-Dichlorobenzene 7 μg/L³ NT NT ND ND 1,1-Dichlorobenzene 7 μg/L³ NT NT ND ND 1,1-Dichlorobenzene 7 μg/L³ NT NT NT ND ND							
Chloroform (THM) 80 μg/L¹ NT NT ND ND Chlorodibromomethane (THM) 80 μg/L¹ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (DBI) 0.2 μg/L¹ NT NT NT ND ND 1,2-Dichorobethane (EDB) 0.05 μg/L¹ NT NT NT ND ND 1,2-Dichlorobethane (EDB) 600 μg/L¹ NT NT NT ND ND 1,4-Dichlorobethane 75 μg/L¹ NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT NT ND ND 1,2-Dichloroethene 70 μg/L¹ NT NT NT ND ND 1,2-Dichloroethe							
Chlorodibromomethane (THM) 80 μg/L¹ NT NT ND ND 1,2-Dibromo-3-chloropropane (DBK) 0.2 μg/L¹ NT NT NT ND ND 1,2-Dibromo-3-chloropropane (DBK) 0.2 μg/L¹ NT NT NT ND ND 1,2-Dibriomoethane (EDB) 0.05 μg/L¹ NT NT NT ND ND 1,4-Dichlorobenzene 75 μg/L¹ NT NT NT ND ND 1,4-Dichloroe-2-butene μg/L NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT ND ND 1,1-Dichloroethylene 100 μg/L¹ NT NT NT ND ND 1,2-Dichloroethylene 100 μg/L¹ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1,2-Dibromo-3-chloropropane (DBK) 0.2 μg/L¹ NT NT ND ND 1,2-Dibromoethane (EDB) 0.05 μg/L¹ NT NT NT ND ND 1,2-Dichlorobenzene 600 μg/L¹ NT NT NT ND ND 1,4-Dichlorobenzene 75 μg/L¹ NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,1-Dichloroethylene 7 μg/L¹ NT NT NT ND ND 1,1-Dichloroethylene 70 μg/L¹ NT NT NT ND ND cis-1,2-Dichloroethene 100 μg/L¹ NT NT NT ND ND cis-1,2-Dichloroethene 100 μg/L¹ NT NT NT ND ND cis-1,2-Dichloroethene 100 μg/L¹ NT NT NT ND ND cis-1,3-D	, ,						
1,2-Dibromoethane (EDB) 0.05 µg/L¹ NT NT ND ND 1,2-Dichlorobenzene 600 µg/L¹ NT NT ND ND 1,4-Dichlorobenzene 75 µg/L¹ NT NT NT ND ND 1,4-Dichloro-2-butene µg/L NT NT NT ND ND 1,1-Dichloroethane 5 µg/L¹ NT NT NT ND ND 1,2-Dichloroethane 5 µg/L¹ NT NT NT ND ND 1,1-Dichloroethylene 7 µg/L¹ NT NT NT ND ND cis-1,2-Dichloroethene 70 µg/L¹ NT NT NT ND ND trans-1,2-Dichloroethene 100 µg/L¹ NT NT NT ND ND 1,2-Dichloropropane 5 µg/L¹ NT NT NT ND ND 1,2-Dichloropropane µg/L NT NT NT ND ND 1,2-Dichloropropane µg/L <							
1,2-Dichlorobenzene 600 μg/L¹ NT NT ND ND 1,4-Dichlorobenzene 75 μg/L¹ NT NT ND ND 1,1-Dichloroe-2-butene μg/L NT NT NT ND ND 1,1-Dichloroethane 5 μg/L¹ NT NT NT ND ND 1,2-Dichloroethane 7 μg/L¹ NT NT ND ND 1,1-Dichloroethylene 7 μg/L¹ NT NT ND ND 1,1-Dichloroethene 70 μg/L¹ NT NT ND ND 1,2-Dichloropropene 100 μg/L¹ NT NT ND ND 1,2-Dichloropropene μg/L NT NT ND ND 1,2-Dichloropropene μg/L NT NT ND ND 160 μg/L² NT NT ND ND Ethylbenzene 70 μg/L² NT NT ND ND Methyl bylyl ketone(2-Hexanone) 160 μg/L² NT <							
1,4-Dichlorobenzene 75 $\mu g/L^1$ NT NT ND ND trans-1,4-Dichloro-2-butene $\mu g/L$ NT NT NT ND ND 1,1-Dichloroethane $5 \mu g/L$ NT NT NT ND ND 1,2-Dichloroethane $7 \mu g/L^1$ NT NT NT ND ND 1,1-Dichloroethylene $7 \mu g/L^1$ NT NT NT ND ND tcs-1,2-Dichloroethene $100 \mu g/L^1$ NT NT NT ND ND trans-1,2-Dichloropropane $5 \mu g/L^1$ NT NT NT ND ND tis-1,3-Dichloropropane $\mu g/L$ NT NT NT ND ND Ethylbenzene $700 \mu g/L^1$ NT NT NT ND ND Ethylbenzene $700 \mu g/L^1$ NT NT NT ND ND Methyl butyl ketone(2-Hexanone) $160 \mu g/L^2$ NT NT NT ND ND							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					NT	ND	
1,1 - Dichloroethane $5 \ \mu g/L$ NT NT ND ND 1,2 - Dichloroethane $5 \ \mu g/L^1$ NT NT NT ND ND 1,2 - Dichloroethylene $7 \ \mu g/L^1$ NT NT NT ND ND cis-1,2 - Dichloroethene $100 \ \mu g/L^1$ NT NT NT ND ND 1,2 - Dichloropropane $5 \ \mu g/L^1$ NT NT NT ND ND 1,2 - Dichloropropane $\mu g/L$ NT NT NT ND ND 1,3 - Dichloropropane $\mu g/L$ NT NT NT ND ND 1,3 - Dichloropropane $\mu g/L$ NT NT NT ND ND 1,2 - Dichloropropane $\mu g/L$ NT NT ND ND 1,2 - Dichloropropane $\mu g/L$ NT NT ND ND 1,2 - Dichloropropane $\mu g/L$ NT NT ND ND Ethylbenzene $70 \ \mu g/L^2$							
1,1-Dichloroethylene $7 \mu g/L^1$ NT NT ND ND cis-1,2-Dichloroethene $70 \mu g/L^1$ NT NT ND ND trans-1,2-Dichloroethene $100 \mu g/L^1$ NT NT NT ND ND 1,2-Dichloropropane $5 \mu g/L^1$ NT NT NT ND ND cis-1,3-Dichloropropene $\mu g/L$ NT NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT ND ND Methyl bezere $700 \mu g/L^2$ NT NT ND ND Methyl ketone(2-Hexanone) $160 \mu g/L^2$ NT NT ND ND Dibromomethane $61 \mu g/L^5$ NT NT NT ND ND Methyl ketone(2-Butanone) $4000 \mu g/L^2$ NT	1,1 -Dichloroethane			NT	NT	ND	ND
cis-1,2-Dichloroethene $70 \ \mu g/L^1$ NT NT ND ND trans-1,2-Dichloroethene $100 \ \mu g/L^1$ NT NT NT ND ND 1,2-Dichloropropane $5 \ \mu g/L^1$ NT NT NT ND ND cis-1,3-Dichloropropene $\mu g/L$ NT NT NT ND ND Ethylbenzene $700 \ \mu g/L^5$ NT NT NT ND ND Methyl butyl ketone (2-Hexanone) $160 \ \mu g/L^5$ NT NT ND ND Bromomethane $10 \ \mu g/L^2$ NT NT ND ND Chloromethane $30 \ \mu g/L^2$ NT NT ND ND Dibromomethane $61 \ \mu g/L^5$ NT NT ND ND Methyle chloride $5 \ \mu g/L^1$ NT NT ND ND Methyl ethyl ketone (2-Butanone) $4000 \ \mu g/L^2$ NT NT ND ND Methyl jodide $\mu g/L$ NT NT	1,2-Dichloroethane	5 μg/L ¹		NT	NT	ND	ND
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1-Dichloroethylene	7 μg/L ¹		NT	NT	ND	ND
1,2-Dichloropropane 5 $\mu g/L^1$ NT NT ND ND cis-1,3-Dichloropropene $\mu g/L$ NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT NT ND ND Methyl butyl ketone(2-Hexanone) $160 \ \mu g/L^5$ NT NT ND ND Bromomethane $10 \ \mu g/L^2$ NT NT ND ND Chloromethane $61 \ \mu g/L^5$ NT NT ND ND Methylene chloride $5 \ \mu g/L^1$ NT NT ND ND Methyl ethyl ketone(2-Butanone) $4000 \ \mu g/L^2$ NT NT ND ND Methyl ichide $\mu g/L$ NT NT ND ND Methyl ichide $\mu g/L$ NT NT ND ND Methyl ichide $\mu g/L$ NT NT ND ND S	cis-1,2-Dichloroethene	70 μg/L ¹		NT	NT	ND	ND
cis-1,3-Dichloropropene $\mu g/L$ NT NT ND ND trans-1,3-Dichloropropene $\mu g/L$ NT NT ND ND Ethylbenzene 700 $\mu g/L^1$ NT NT NT ND ND Methyl butyl ketone(2-Hexanone) 160 $\mu g/L^5$ NT NT NT ND ND Bromomethane 10 $\mu g/L^2$ NT NT ND ND Chloromethane 61 $\mu g/L^5$ NT NT ND ND Methylene chloride 5 $\mu g/L^1$ NT NT ND ND Methyl ketone (2-Butanone) 4000 $\mu g/L^2$ NT NT ND ND Methyl iodide $\mu g/L$ NT NT ND ND Methyl-2-pentanone $\mu g/L$ NT NT ND ND Styrene 100 $\mu g/L^1$ NT NT ND ND Styrene 100 $\mu g/L^2$ NT NT ND ND 1,1,1,2,2-Tetrachloroethane<	trans-1,2-Dichloroethene	100 μg/L ¹		NT	NT	ND	ND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2-Dichloropropane	5 μg/L ¹		NT	NT	ND	ND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cis-1,3-Dichloropropene	μg/L		NT	NT	ND	ND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	trans-1,3-Dichloropropene						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		700 μg/L¹					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		160 μg/L ⁵					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Tetrachloroethylene(PCE) 5 $\mu g/L^1$ NT NT ND ND Toluene 1000 $\mu g/L^1$ NT NT ND ND ND							
Toluene 1000 $\mu g/L^1$ NT NT ND ND						ND	
	1,1,1-Trichloroethane	200 μg/L ¹					
1,1,2-Trichloroethane 5 μ g/L ¹ NT NT ND ND				NT	NT	ND	ND
Trichloroethylene(TCE) 5 μ g/L ¹ NT NT ND ND	Trichloroethylene(TCE)			NT	NT	ND	ND
Trichloroflouromethane 2000 $\mu g/L^2$ NT NT ND ND	Trichloroflouromethane	2000 μg/L ²		NT	NT	ND	ND
1,2,3-Trichloropropane 40 $\mu g/L^2$ NT NT ND ND	1,2,3-Trichloropropane	40 μg/L ²		NT	NT	ND	ND
Vinyl acetate 410 $\mu g/L^5$ NT NT ND ND	Vinyl acetate			NT	NT	ND	ND
Vinyl chloride 2 $\mu g/L^{1}$ NT NT ND ND	•						
Xylenes 10000 $\mu g/L^1$ NT NT ND ND	•						
Methyl tert-butyl ether (MTBE) 20 - 40 μg/L ⁴ NT NT 4.9 4.67	Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴		NT	NT	4.9	4.67

No threshold value has been provided for parameters not identified in the sources listed above

Note: Analytical data reported since commencement of low flow purging and sampling.

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 edition of the Drinking Water Standards and Health Advisories
4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{5.} Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

TABLE 5H SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON DEC 2019 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

OW-15

ND 0.0150 0.151

ND

ND

0.0010

0.0066

0.0003

ND 0.016

ND

ND ND

0.0006

0.010

OW-16

NT

NT

NT

NT

NT NT

NT NT

NT NT

NT NT

NT

NT

NT

			W-9		Background Well		C	Compliance wells	5
	<u>Parameter</u>	Tolerand TL=AV		Threshold Value	OW-9	OW-7	OW-12	OW-13	OW-14
METALS	Antimony	0.0290	mg/L	0.006 mg/L ¹	ND	NT	ND	ND	0.0002
METALS	Arsenic	0.0030	mg/L	0.010 mg/L ¹	0.0001	NT	ND	0.0104	0.0002
	Barium	0.0572	mg/L	2 mg/L ¹	0.001	NT	0.023	0.122	0.168
	Beryllium	0.0003	mg/L	0.004 mg/L ¹	ND	NT	ND	ND	ND
	Cadmium	0.4511	mg/L	0.005 mg/L ¹	0.0002	NT	0.0004	0.0008	0.0002
	Chromium	0.0384	mg/L	0.1 mg/L ¹	0.0020	NT	0.0001	0.0004	0.0003
	Cobalt	0.0041	mg/L	0.73 mg/L ⁵	0.0004	NT	0.001	0.0105	0.0036
	Copper	0.0080	mg/L	1.3 mg/L1	ND	NT	ND	0.004	0.002
	Lead	0.2246	mg/L	0.015 mg/L ¹	0.0031	NT	0.0003	0.0007	0.0014
	Mercury	0.0001	mg/L	0.002 mg/L ¹	ND	NT	ND	ND	ND
	Nickel	0.0297	mg/L	0.1 mg/L ²	0.001	NT	0.010	0.010	0.007
	Selenium	0.0010	mg/L	0.05 mg/L ¹	ND	NT	ND	ND	ND
	Silver	0.0005	mg/L	0.1 mg/L ^{2,3}	ND	NT	ND	ND	ND
	Thallium	0.0001	mg/L	0.002 mg/L ¹	ND	NT	ND	ND	ND
	Tin	0.0025	mg/L	22 mg/L ⁵	ND	NT	ND	ND	ND
	Vanadium	0.0080	mg/L	0.26 mg/L ⁵	0.0005	NT	ND	ND	ND
	Zinc	13.7198	mg/L	2 - 5 mg/L ^{2,3} 610 μg/L ⁵	0.001	NT	ND	0.009	0.004
VOC'S	Acetone			610 μg/L° 0.039 μg/L°					
	Acrylonitrile Benzene			0.039 μg/L¹ 5 μg/L¹					
	Bromochloromethane			80 μg/L ²					
	Bromodichloromethane (THM)			90 μg/L¹					
	Bromoform			80 μg/L¹					
	Carbon disulfide			1000 μg/L°					
	Carbon tetrachloride			5 μg/L¹					
	Chlorobenzene			100 μg/L¹					
	Chloroethane			4.6 μg/L ⁵					
	Chloroform			80 μg/L¹					
	Chlorodibromomethane (THM)			80 μg/L¹					
	1,2-Dibromo-3-chloropropane (DBCP)			0.2 μg/L¹					
	1,2-Dibromoethane (EDB)			0.05 μg/L ¹					
	1,2-Dichlorobenzene			600 μg/L¹					
	1,4-Dichlorobenzene			75 μg/L¹					
	trans-1,4-Dichloro-2-butene			μg/L					
	1,1 -Dichloroethane			5 μg/L 5 μg/L¹					
	1,2-Dichloroethane			5 μg/L¹ 7 μg/L¹					
	1,1-Dichloroethylene cis-1,2-Dichloroethene			7 μg/L¹ 70 μg/L¹					
	trans-1,2-Dichloroethene			100 μg/L¹					
	1,2-Dichloropropane			5 μg/L¹					
	cis-1,3-Dichloropropene			μg/L					
	trans-1,3-Dichloropropene			μg/L					
	Ethylbenzene			700 μg/L ¹					
	Methyl butyl ketone(2-Hexanone)			160 μg/L ⁵					
	Bromomethane			10 μg/L ²					
	Chloromethane			30 μg/L ²					
	Dibromomethane			61 μg/L ⁵					
	Methylene chloride			5 μg/L¹					
	Methyl ethyl ketone(2-Butanone)			4000 μg/L²					
	Methyl iodide			μg/L					
	4-Methyl-2-pentanone			μg/L					
	Styrene			100 μg/L¹ 70 μg/L²					
	1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane			70 μg/L 0.3 μg/L²					
	Tetrachloroethylene(PCE)			0.3 μg/L 5 μg/L ¹					
	Toluene			5 μg/L 1000 μg/L ¹					
	1,1,1-Trichloroethane			200 μg/L ¹					
	1,1,2-Trichloroethane			5 μg/L¹					
	Trichloroethylene(TCE)			5 μg/L¹					
	Trichloroflouromethane			2000 μg/L ²					
	1,2,3-Trichloropropane			40 μg/L ²					
	Vinyl acetate			410 μg/L ⁵					
	Vinyl chloride			2 μg/L¹					
	Xylenes			10000 μg/L ¹					
	Marked to at boat 1 at the (MTDE)			20 40 µg/l 4					

- Methyl tert-butyl ether (MTBE) 20 - 40 μg/L⁴ 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit.
- However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

No threshold value has been provided for parameters not identified in the sources listed above

" = Exceedance of TL ND = Not Detected

Tolerance Limit (TL) constructed from background (upgradient) well data from OW-9.

6.0 CONCLUSIONS

The groundwater monitoring data obtained for the Landfill during this reporting period reflects generally consistent trends in the number and concentrations of target parameters detected relative to historical data. Recent and historical data still suggest a generally consistent low-level impact² to groundwater beneath and downgradient from the Landfill.

Compliance Monitoring

In 2019, there were a total of twenty-seven (27) exceedances of Tolerance Limit (TL) thresholds at the compliance wells at the Landfill. Although this number of exceedances is lower than recent years, it should be noted that the September 2019 monitoring round was not completed due to safety concerns. A total of one (1) Appendix A metal; zinc, exceeded its CUSUM thresholds during the 2019 monitoring period. A total of one (1) Appendix A VOC, MTBE, exceeded its CUSUM thresholds during the 2019 monitoring period.

Assessment Monitoring

In 2019 Pare performed Assessment Monitoring at the following times and locations:

• OW-14 in March 2019, originally triggered by a detection of the Appendix B parameter sulfides during the December 2017 monitoring round.

Pare did not perform Assessment Monitoring at any of the compliance wells during the 2019 period. OW-14 was sampled for sulfides in the March 2019 round, as recommended by the previous annual report, and sulfides were not detected in the sample collected. This marked the second consecutive round in which sulfides were not detected at OW-14, therefore, sulfides monitoring was discontinued for subsequent rounds.

Barium at OW-13 exceeded both of its Shewhart-CUSUM control limits, and a Shewhart-CUSUM exceedance this round, and has exceeded its Tolerance Limit for two consecutive rounds, which would trigger Assessment Monitoring. Barium is consistently detected in all the groundwater monitoring

² The analytical data compiled from the routine quarterly groundwater monitoring represent low-level impacts in comparison to water quality thresholds published in the US EPA 2012 Edition of the Drinking Water Standards and Health Advisories.

wells on-site at concentrations consistent with the recent detection at OW-13. As such, it does not, in Pare's opinion, appear as though this recent detection is a significant change in groundwater quality beneath the landfill, and therefore, Pare does not recommend Assessment Monitoring in March 2020.

Shewhart-CUSUM Analysis

During the March 2019 and December 2019 monitoring rounds, barium exceeded both of its Shewhart-CUSUM thresholds at OW-12 and OW-13. Barium also exceeded both of its Shewhart-CUSUM thresholds at OW-12 in the June 2019 monitoring round. Additionally in the June 2019 monitoring round, MTBE exceeded its thresholds.

Barium at OW-12 has exceeded both of its Shewhart-CUSUM thresholds in each monitoring round since June 2014. Despite this, barium has not triggered Assessment Monitoring parameters at OW-12. Pare will continue to monitor barium trends at the Landfill in future monitoring rounds.

The Shewhart-CUSUM analysis provides a method for discerning trends in reported landfill concentrations over an extended period of time. The analysis compares recently reported concentrations to those reported during the first two years of monitoring at the sampling locations. Since Pare implemented the Shewhart-CUSUM control charts, several organic parameters have exhibited a gradual increase in CUSUM values over time. In most cases, specifically at OW-15, these increases in CUSUM values are consistent with a general rise in reported concentrations (i.e., a divergence from the baseline data in the CUSUM analysis) since September 2006. As an example, the trend and reported concentrations of MTBE are shown in the *Reported Concentrations of MTBE* figure. Although the reported concentrations for MTBE are generally rising at OW-15, it remains significantly below its established drinking water advisories.

7.0 RECOMMENDATIONS

The groundwater monitoring program, as currently constituted, appears to be generally adequate for the purposes of evaluating groundwater impact from the Landfill. The statistical analyses employed to review groundwater impacts appear to be sufficiently useful at distinguishing between background concentrations and landfill-derived contaminants, as well as increasing contaminant trends at individual wells.

The purpose of the TI evaluation is to determine if a contaminant reported in a groundwater sample collected from a compliance well statistically exceeds that of the background concentration. This statistical exceedance would suggest that the contaminant is, at least in part, derived from landfilling activities. June 2019 monitoring round marked the first monitoring round in which OW-12 was redesignated as a background well. Per its new designation as a background well, the TI evaluation should be performed against OW-12, as well as OW-9. This update to the TI evaluation should be performed beginning in the March 2020 monitoring round, and subsequent monitoring rounds.

New background well OW-17 was installed in June 2019. This well should be included groundwater monitoring program beginning in the March 2020 monitoring round. Similar to OW-12, this well should be included in the TI evaluation once it has completed a minimum of eight (8) monitoring rounds. It is anticipated that OW-17 will be included as a background well in the TI evaluation beginning in the March 2022 monitoring round.

-36-

8.0 REFERENCES

State of Rhode Island and Providence Plantations, Department of Environmental Management, Office of Waste Management, Rules and Regulations for Composting Facilities and Solid Waste Management Facilities. Regulation DEM-OWM-SWO1-97.

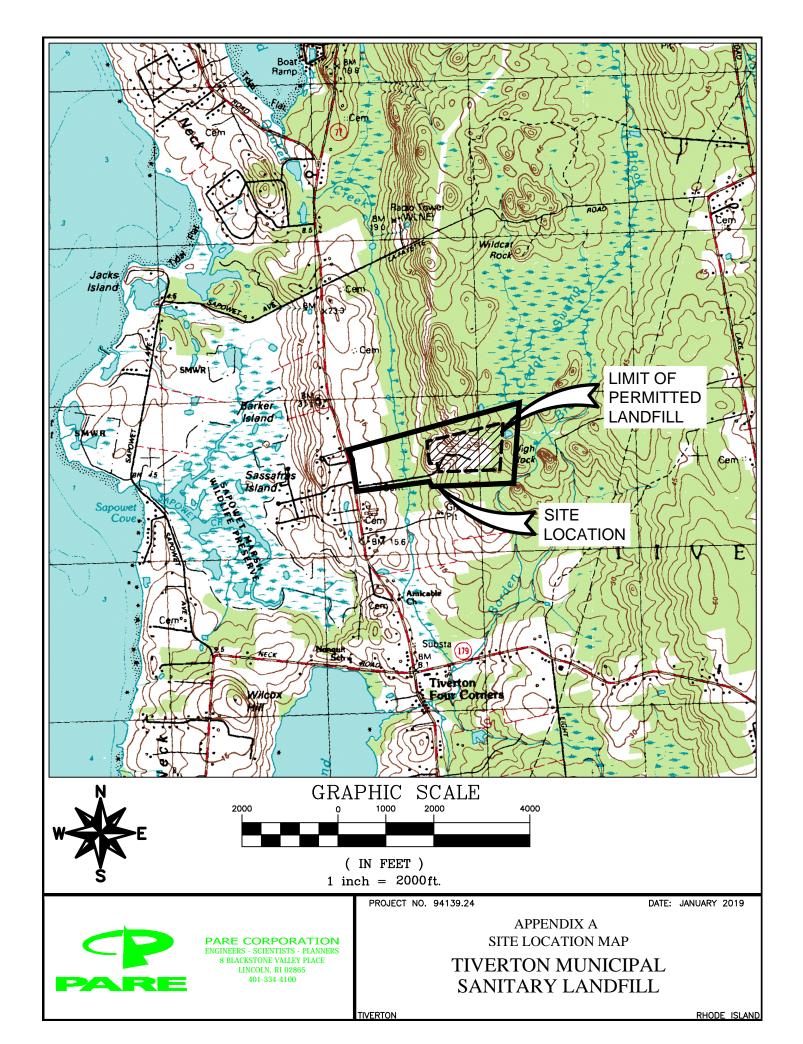
NUS Corporation, 1990, Final Screening Site Inspection, Tiverton Town Landfill #2, Tiverton, Rhode Island.

Pollock, S.J., 1964, Bedrock Geology of the Tiverton Quadrangle, Rhode Island Massachusetts: Geological Survey Bulletin 1158-D.

Rector, D. D., 1981, Soil Survey of Rhode Island: U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the Rhode Island Agricultural Experiment Station.

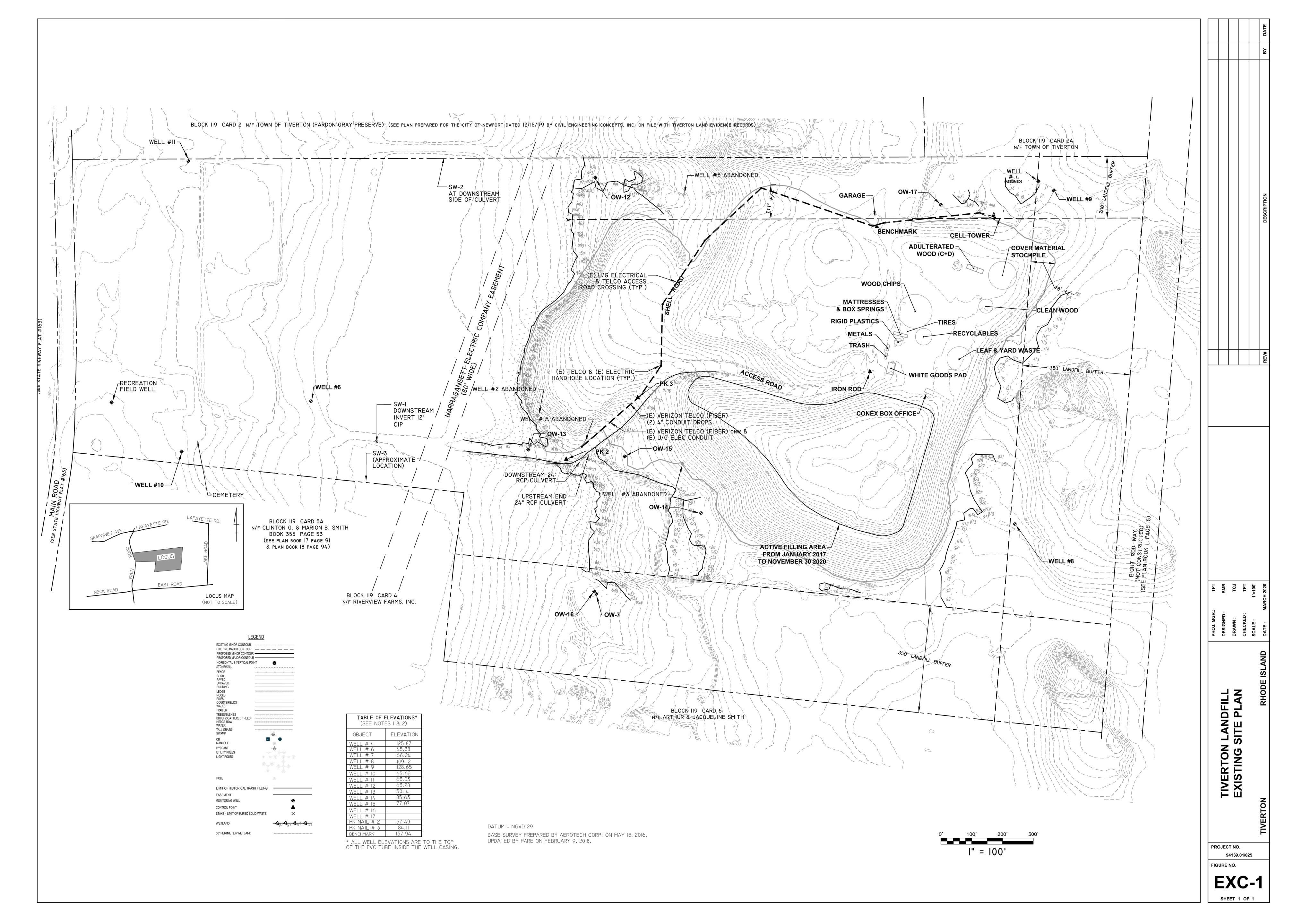
U.S. EPA, 1996 (Revised 2010), Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001

U.S. EPA, 1989, Statistical Analysis of Ground-Water Monitoring Data at RCRA (Resource Conservation and Recovery Act) Facilities, Interim Final Guidance, EPA/530/SW-89/026.


United States Geological Survey (USGS), 1949 (Photo revised 1970 and 1975), Tiverton Quadrangle Topographic Map.

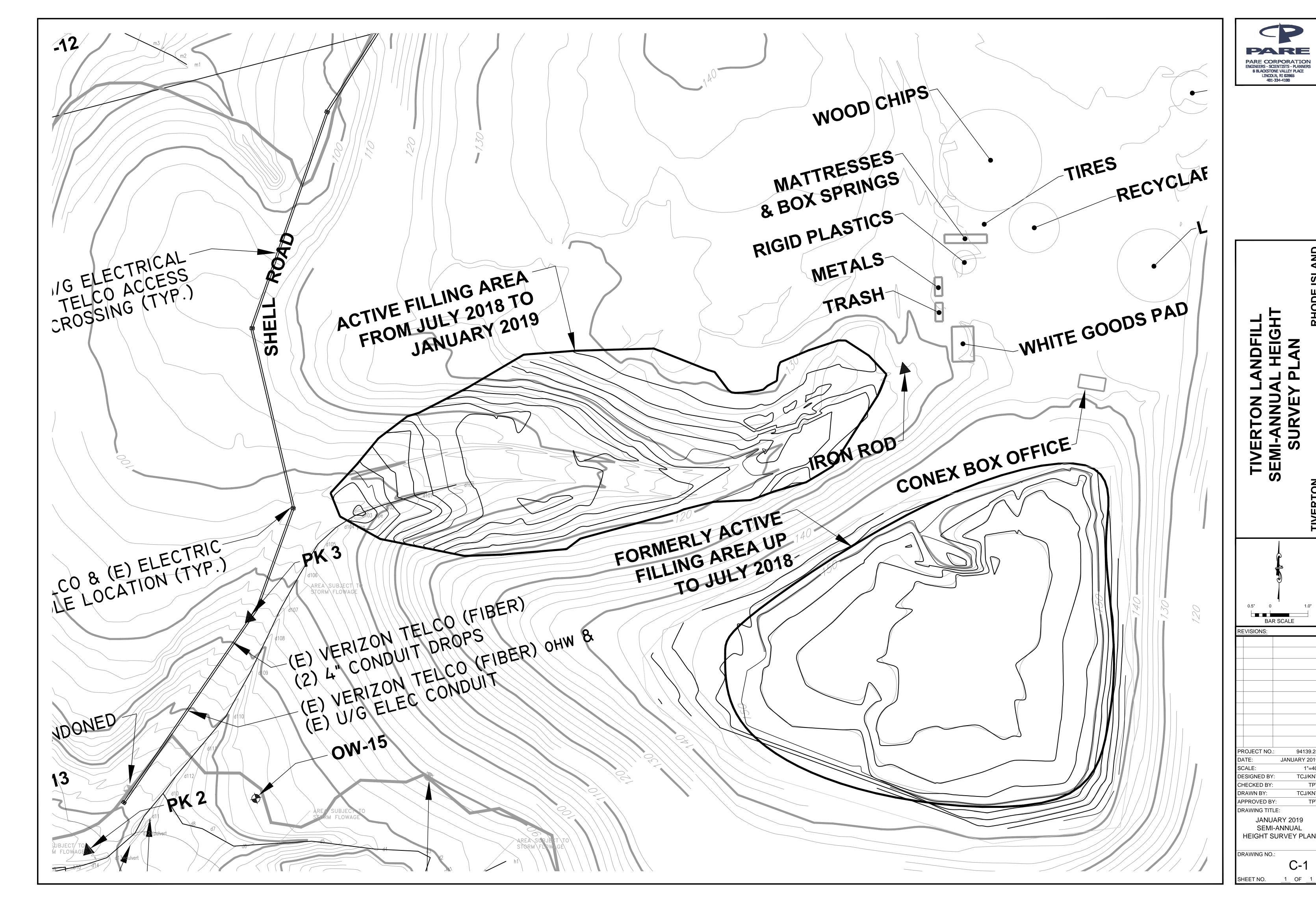
APPENDIX A

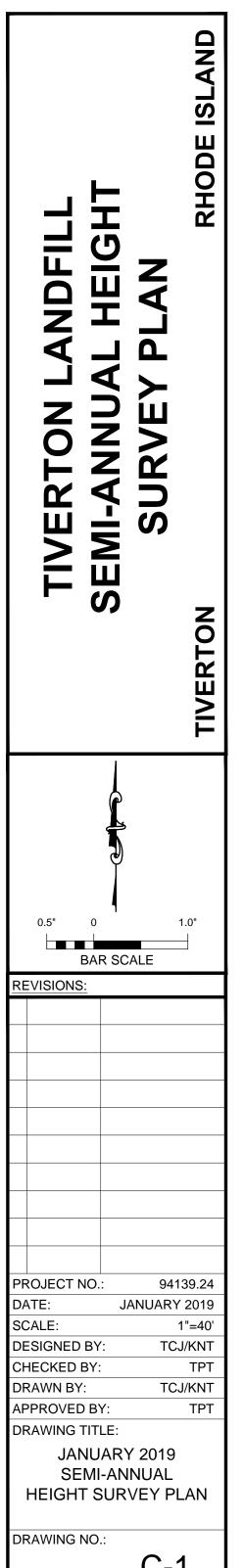
Site Location Map



APPENDIX B

Landfill Existing Site Plan




APPENDIX C

2019 End of Year Height Survey Plan

APPENDIX D

December Laboratory Analytical Data Report

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9L24015 Client Project: 94139 - Tiverton Landfill

Report Date: 02-January-2020

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com NETLAB Case Number: 9L24015

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 12/24/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9L24015. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9L24015-01	OW-9	Water	12/23/2019	12/24/2019
9L24015-02	OW-12	Water	12/23/2019	12/24/2019
9L24015-03	OW-13	Water	12/23/2019	12/24/2019
9L24015-04	OW-14	Water	12/23/2019	12/24/2019
9L24015-05	OW-15	Water	12/23/2019	12/24/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-12 (Lab Number: 9L24015-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-13 (Lab Number: 9L24015-03)

<u>Method</u>
EPA 200.8
EPA 7470A
EPA 200.8
EPA 8260C
EPA 200.8

OW-14 (Lab Number: 9L24015-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8

Request for Analysis (continued)

OW-14 (Lab Number: 9L24015-04) (continued)

<u>Analysis</u>	<u>Method</u>
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-15 (Lab Number: 9L24015-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

Request for Analysis (continued)

OW-9 (Lab Number: 9L24015-01)

Analysis	Method
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 9L24015

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Sample: OW-9

Lab Number: 9L24015-01 (Water)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.0001	mg/L	12/26/19	12/30/19		
Arsenic	0.0001		0.0001	mg/L	12/26/19	12/30/19		
Barium	0.011		0.001	mg/l	12/26/19	12/30/19		
Beryllium	ND		0.0001	mg/L	12/26/19	12/30/19		
Cadmium	0.0002		0.0001	mg/L	12/26/19	12/30/19		
Chromium	0.0020		0.0001	mg/L	12/26/19	12/30/19		
Cobalt	0.0004		0.0001	mg/L	12/26/19	12/30/19		
Copper	ND		0.001	mg/l	12/26/19	12/30/19		
Mercury	ND		0.0002	mg/L	12/26/19	12/26/19		
Nickel	0.001		0.001	mg/l	12/26/19	12/30/19		
Selenium	ND		0.005	mg/L	12/26/19	12/30/19		
Silver	ND		0.0001	mg/L	12/26/19	12/30/19		
Thallium	ND		0.0001	mg/L	12/26/19	12/30/19		
Tin	ND		0.005	mg/l	12/26/19	12/30/19		
Vanadium	0.0005		0.0005	mg/L	12/26/19	12/30/19		
Zinc	0.001		0.001	mg/l	12/26/19	12/30/19		
Lead	0.0031		0.0001	mg/L	12/26/19	12/30/19		

Sample: OW-12

Lab Number: 9L24015-02 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND	0.0001	mg/L	12/26/19	12/30/19		
Arsenic	ND	0.0001	mg/L	12/26/19	12/30/19		
Barium	0.023	0.001	mg/l	12/26/19	12/30/19		
Beryllium	ND	0.0001	mg/L	12/26/19	12/30/19		
Cadmium	0.0004	0.0001	mg/L	12/26/19	12/30/19		
Chromium	0.0001	0.0001	mg/L	12/26/19	12/30/19		
Cobalt	0.0010	0.0001	mg/L	12/26/19	12/30/19		
Copper	ND	0.001	mg/l	12/26/19	12/30/19		
Mercury	ND	0.0002	mg/L	12/26/19	12/26/19		
Nickel	0.010	0.001	mg/l	12/26/19	12/30/19		
Selenium	ND	0.005	mg/L	12/26/19	12/30/19		
Silver	ND	0.0001	mg/L	12/26/19	12/30/19		
Thallium	ND	0.0001	mg/L	12/26/19	12/30/19		
Tin	ND	0.005	mg/l	12/26/19	12/30/19		
Vanadium	ND	0.0005	mg/L	12/26/19	12/30/19		
Zinc	ND	0.001	mg/l	12/26/19	12/30/19		
Lead	0.0003	0.0001	mg/L	12/26/19	12/30/19		

Sample: OW-13

Lab Number: 9L24015-03 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.0001	mg/L	12/26/19	12/30/19	
Arsenic	0.0104		0.0001	mg/L	12/26/19	12/30/19	
Barium	0.122		0.001	mg/l	12/26/19	12/30/19	
Beryllium	ND		0.0001	mg/L	12/26/19	12/30/19	
Cadmium	0.0008		0.0001	mg/L	12/26/19	12/30/19	
Chromium	0.0004		0.0001	mg/L	12/26/19	12/30/19	
Cobalt	0.0105		0.0001	mg/L	12/26/19	12/30/19	
Copper	0.004		0.001	mg/l	12/26/19	12/30/19	
Mercury	ND		0.0002	mg/L	12/26/19	12/26/19	
Nickel	0.010		0.001	mg/l	12/26/19	12/30/19	
Selenium	ND		0.005	mg/L	12/26/19	12/30/19	
Silver	ND		0.0001	mg/L	12/26/19	12/30/19	
Thallium	ND		0.0001	mg/L	12/26/19	12/30/19	
Tin	ND		0.005	mg/l	12/26/19	12/30/19	
Vanadium	ND		0.0005	mg/L	12/26/19	12/30/19	
Zinc	0.009		0.001	mg/l	12/26/19	12/30/19	
Lead	0.0007		0.0001	mg/L	12/26/19	12/30/19	

Sample: OW-14

Lab Number: 9L24015-04 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	0.0002		0.0001	mg/L	12/26/19	12/30/19	
Arsenic	0.0004		0.0001	mg/L	12/26/19	12/30/19	
Barium	0.168		0.001	mg/l	12/26/19	12/30/19	
Beryllium	ND		0.0001	mg/L	12/26/19	12/30/19	
Cadmium	0.0002		0.0001	mg/L	12/26/19	12/30/19	
Chromium	0.0003		0.0001	mg/L	12/26/19	12/30/19	
Cobalt	0.0036		0.0001	mg/L	12/26/19	12/30/19	
Copper	0.002		0.001	mg/l	12/26/19	12/30/19	
Mercury	ND		0.0002	mg/L	12/26/19	12/26/19	
Nickel	0.007		0.001	mg/l	12/26/19	12/30/19	
Selenium	ND		0.005	mg/L	12/26/19	12/30/19	
Silver	ND		0.0001	mg/L	12/26/19	12/30/19	
Thallium	ND		0.0001	mg/L	12/26/19	12/30/19	
Tin	ND		0.005	mg/l	12/26/19	12/30/19	
Vanadium	ND		0.0005	mg/L	12/26/19	12/30/19	
Zinc	0.004		0.001	mg/l	12/26/19	12/30/19	
Lead	0.0014		0.0001	mg/L	12/26/19	12/30/19	

Sample: OW-15

Lab Number: 9L24015-05 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.0001	mg/L	12/26/19	12/30/19	
Arsenic	0.0150		0.0001	mg/L	12/26/19	12/30/19	
Barium	0.151		0.001	mg/l	12/26/19	12/30/19	
Beryllium	ND		0.0001	mg/L	12/26/19	12/30/19	
Cadmium	ND		0.0001	mg/L	12/26/19	12/30/19	
Chromium	0.0010		0.0001	mg/L	12/26/19	12/30/19	
Cobalt	0.0066		0.0001	mg/L	12/26/19	12/30/19	
Copper	0.003		0.001	mg/l	12/26/19	12/30/19	
Mercury	ND		0.0002	mg/L	12/26/19	12/26/19	
Nickel	0.016		0.001	mg/l	12/26/19	12/30/19	
Selenium	ND		0.005	mg/L	12/26/19	12/30/19	
Silver	ND		0.0001	mg/L	12/26/19	12/30/19	
Thallium	ND		0.0001	mg/L	12/26/19	12/30/19	
Tin	ND		0.005	mg/l	12/26/19	12/30/19	
Vanadium	0.0006		0.0005	mg/L	12/26/19	12/30/19	
Zinc	0.010		0.001	mg/l	12/26/19	12/30/19	
Lead	0.0003		0.0001	mg/L	12/26/19	12/30/19	

Case Number: 9L24015

Sample: OW-9 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile Methacrylonitrile	ND ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-9 Case Number: 9L24015

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	101	70-130
1,2-Dichloroethane d4	98	70-130
4 BFB	95	70-130

ND = Not Detected

Case Number: 9L24015

Sample: OW-12 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-12 Case Number: 9L24015

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	100	70-130
1,2-Dichloroethane d4	98	70-130
4 BFB	96	70-130

ND = Not Detected

Case Number: 9L24015

Sample: OW-13 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	5.31	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-13 Case Number: 9L24015

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	1.13	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.35	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	101	70-130
1,2-Dichloroethane d4	102	70-130
4 BFB	93	70-130

ND = Not Detected

Case Number: 9L24015

Sample: OW-14 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	1.56	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	8.85	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-14 Case Number: 9L24015

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.02	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	5.4	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	99	70-130
1,2-Dichloroethane d4	101	70-130
4 BFB	93	70-130

ND = Not Detected

Case Number: 9L24015

Sample: OW-15 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	1.9	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	16.99	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-15 Case Number: 9L24015

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.69	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.67	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	102	70-130
1,2-Dichloroethane d4	101	70-130
4 BFB	94	70-130

ND = Not Detected

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L1069 - Metals Di	aestion Waters									
Blank (B9L1069-BLK1)	gestion waters			Pr	epared: 12/2	6/19 Analyze	d: 12/30/19			
Cobalt	ND		0.0001	mg/L		, ,				
Selenium	ND		0.005	mg/L						
Nickel	ND		0.001	mg/l						
Copper	ND		0.001	mg/l						
Tin	ND		0.005	mg/l						
Chromium	ND		0.0001	mg/L						
Antimony	ND		0.0001	mg/L						
Vanadium	ND		0.0005	mg/L						
Thallium	ND		0.0001	mg/L						
Cadmium	ND		0.0001	mg/L						
Beryllium	ND		0.0001	mg/L						
Zinc	ND		0.001	mg/l						
Barium	ND		0.001	mg/l						
Arsenic	ND		0.0001	mg/L						
Silver	ND		0.0001	mg/L						
Lead	ND		0.0001	mg/L						
LCS (B9L1069-BS2)				Pr	epared: 12/2	6/19 Analyze	d: 12/30/19			
Zinc	0.181		0.001	mg/l	0.200	., , .	90.4	85-115		
Tin	0.020		0.005	mg/l	0.0200		101	85-115		
Silver	0.0200		0.0001	mg/L	0.0200		100	85-115		
Selenium	0.017		0.005	mg/L	0.0200		85.2	85-115		
Vanadium	0.0204		0.0005	mg/L	0.0200		102	85-115		
Barium	0.205		0.001	mg/l	0.200		102	85-115		
Nickel	0.205		0.001	mg/l	0.200		102	85-115		
Copper	0.226		0.001	mg/l	0.200		113	85-115		
Thallium	0.0202		0.0001	mg/L	0.0200		101	85-115		
Chromium	0.0206		0.0001	mg/L	0.0200		103	85-115		
Antimony	0.0193		0.0001	mg/L	0.0200		96.4	85-115		
Cobalt	0.0203		0.0001	mg/L	0.0200		102	85-115		
Cadmium	0.0189		0.0001	mg/L	0.0200		94.7	85-115		
Beryllium	0.0195		0.0001	mg/L	0.0200		97.3	85-115		
Arsenic	0.0189		0.0001	mg/L	0.0200		94.5	85-115		
Lead	0.0203		0.0001	mg/L	0.0200		102	85-115		

Quality Control (Continued)										
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B9L1130 - Metals Co	old-Vapor Mercu	ry								
Blank (B9L1130-BLK1)					Prepared 8	& Analyzed: 1	2/26/19			
Mercury	ND		0.0002	mg/L						
LCS (B9L1130-BS1)					Prepared 8	& Analyzed: 1	2/26/19			

Quality Control (Continued)

Volatile Organic Compounds

			Reporting	Reporting		Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Spike Level	Result	%REC	Limits	RPD	Limit
Batch: B0A0013 - Purge-Trap				<u> </u>				· · · · · · · · · · · · · · · · · · ·		
Blank (B0A0013-BLK1)					Prepared 8	& Analyzed: 1	2/31/19			
Acetone	ND		10	ug/l						
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		500	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						

Quality Control (Continued)

Analyta	Db	Out	Reporting		Spike	Source	0/ DEC	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B0A0013 - Purge-Trap (Continued)									
Blank (B0A0013-BLK1)					Prepared 8	& Analyzed: 1	2/31/19			
Toluene	ND		1	ug/l						
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		2	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Surrogate: 4-Bromofluorobenzene			48.6	ug/l	50.0		97.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.0	ug/l	50.0		96.0	70-130		
Surrogate: Toluene-d8			49.1	ug/l	50.0		98.2	70-130		
3				49/1						
LCS (B0A0013-BS1)					-	& Analyzed: 1				
Acetone	32			ug/l	50.0		63.5	70-130		
Benzene	52			ug/l	50.0		104	70-130		
Bromobenzene	56			ug/l	50.0		111	70-130		
Bromochloromethane	53			ug/l	50.0		107	70-130		
Bromodichloromethane	53			ug/l	50.0		107	70-130		
Bromoform	52			ug/l	50.0		104	70-130		
Bromomethane	47			ug/l	50.0		93.4	70-130		
2-Butanone	41			ug/l	50.0		82.0	70-130		
tert-Butyl alcohol	44			ug/l	50.0		88.3	70-130		
sec-Butylbenzene	51			ug/l	50.0		103	70-130		
n-Butylbenzene	57			ug/l	50.0		114	70-130		
tert-Butylbenzene	54			ug/l	50.0		107	70-130		
Methyl t-butyl ether (MTBE)	48			ug/l	50.0		95.4	70-130		
Carbon Disulfide	47			ug/l	50.0		94.1	70-130		
Carbon Tetrachloride	56			ug/l	50.0		112	70-130		
Chlorobenzene	52			ug/l	50.0		104	70-130		
Chloroethane	45			ug/l	50.0		90.1	70-130		
Chloroform	52			ug/l	50.0		103	70-130		
Chloromethane	42			ug/l	50.0		84.6	70-130		
4-Chlorotoluene	52			ug/l	50.0		105	70-130		
2-Chlorotoluene	54			ug/l	50.0		108	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	43			ug/l	50.0		85.3	70-130		
Dibromochloromethane	55			ug/l	50.0		111	70-130		
1,2-Dibromoethane (EDB)	54			ug/l	50.0		108	70-130		
Dibromomethane	52			ug/l	50.0		104	70-130		
1,2-Dichlorobenzene	55			ug/l	50.0		109	70-130		
1,3-Dichlorobenzene	54			-	50.0		109	70-130 70-130		
1,4-Dichlorobenzene	52			ug/l	50.0		109	70-130 70-130		
T, I DICHIOLODELIZELLE	32			ug/l	50.0		103	10-T20		

Quality Control (Continued)

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Quai	Lillic	Offics	Level	Result	70INEC	Lillics	NI D	LIIII
Batch: B0A0013 - Purge-Trap	(Continued)									
LCS (B0A0013-BS1)					Prepared 8	& Analyzed: 12	2/31/19			
1,2-Dichloroethane	50			ug/l	50.0		100	70-130		
trans-1,2-Dichloroethene	52			ug/l	50.0		104	70-130		
cis-1,2-Dichloroethene	50			ug/l	50.0		101	70-130		
1,1-Dichloroethene	49			ug/l	50.0		97.1	70-130		
1,2-Dichloropropane	50			ug/l	50.0		99.5	70-130		
2,2-Dichloropropane	54			ug/l	50.0		108	70-130		
cis-1,3-Dichloropropene	51			ug/l	50.0		101	70-130		
trans-1,3-Dichloropropene	54			ug/l	50.0		107	70-130		
1,1-Dichloropropene	59			ug/l	50.0		117	70-130		
Diethyl ether	46			ug/l	50.0		92.2	70-130		
1,4-Dioxane	172			ug/l	250		68.9	70-130		
Ethylbenzene	53			ug/l	50.0		106	70-130		
Hexachlorobutadiene	54			ug/l	50.0		109	70-130		
2-Hexanone	40			ug/l	50.0		80.5	70-130		
Isopropylbenzene	53			ug/l	50.0		106	70-130		
p-Isopropyltoluene	52			ug/l	50.0		104	70-130		
Methylene Chloride	60			ug/l	50.0		119	70-130		
4-Methyl-2-pentanone	42			ug/l	50.0		83.5	70-130		
Naphthalene	43			ug/l	50.0		86.6	70-130		
n-Propylbenzene	54			ug/l	50.0		107	70-130		
Styrene	53			ug/l	50.0		106	70-130		
1,1,1,2-Tetrachloroethane	54			ug/l	50.0		107	70-130		
Tetrachloroethene	58			ug/l	50.0		115	70-130		
Tetrahydrofuran	43			ug/l	50.0		85.6	70-130		
Toluene	54			ug/l	50.0		109	70-130		
1,2,4-Trichlorobenzene	50			ug/l	50.0		99.2	70-130		
1,2,3-Trichlorobenzene	42			ug/l	50.0		83.8	70-130		
1,1,2-Trichloroethane	50			ug/l	50.0		100	70-130		
1,1,1-Trichloroethane	52			ug/l	50.0		105	70-130		
Trichloroethene	52			ug/l	50.0		104	70-130		
1,2,3-Trichloropropane	49			ug/l	50.0		97.6	70-130		
1,3,5-Trimethylbenzene	52			ug/l	50.0		104	70-130		
1,2,4-Trimethylbenzene	52				50.0		104	70-130		
Vinyl Chloride	43			ug/l	50.0		86.6	70-130		
o-Xylene	55			ug/l	50.0		110	70-130 70-130		
				ug/l				70-130 70-130		
m&p-Xylene	114 50			ug/l	100		114			
1,1,2,2-Tetrachloroethane				ug/l	50.0		99.4	70-130		
tert-Amyl methyl ether	51			ug/l	50.0		102	70-130		
1,3-Dichloropropane	50			ug/l	50.0		101	70-130		
Ethyl tert-butyl ether	48			ug/l	50.0		96.7	70-130		
Diisopropyl ether	45			ug/l	50.0		90.1	70-130		
Trichlorofluoromethane	51			ug/l	50.0		101	70-130		
Dichlorodifluoromethane	39			ug/l	50.0		77.6	70-130		
Surrogate: 4-Bromofluorobenzene			49.6	ug/l	50.0		99.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			46.0	ug/l	50.0		92.0	70-130		
Surrogate: Toluene-d8			49.5	ug/l	50.0		99.1	70-130		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECOR

			REMARKS	X X X NID SAM OLO VALORIA	(21/21/20)					NID CAMPLES received (1.)					Laboratory Remarke: Special Instructions: Temp. received: List Specific Detection				Tirnaround /Business Days
α.α.			R CONTAINERS	X HC 1		•••	•••	• • • •			5	3			Date/Time Labor	Cooled ©		Date/Time	C.S. 1.1.
V LANDFILL MONITORING		ecopicem	SAMPLE I.D.	<u></u>	OW-9	JW-12	OW-13	OW - 17	OW-15	- Owy- 16					Date/Time Received by: (Signature)	Date/Time Received by: (Signature)	12/20/ 2:15	Date/Time Received for Laborator by: (Signature)	
94139.24 TIVERTON LANDFILL	PARE CORP	REPORT TO: HIGH SCA & DACE INVOICE TO: ACCOUNT	DATE TIME C G	12/23 ×											Sampled by: (Signature)	Rélinquished by: (Sighatdre)	Jan 1	Relinquished by Stendure)	

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9L24018
Client Project: 94139.01 - Tiverton Landfill Surface Water

Report Date: 03-January-2020

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 12/24/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9L24018. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9L24018-01	SW-1	Water	12/23/2019	12/24/2019
9L24018-02	SW-2	Water	12/23/2019	12/24/2019
9L24018-03	SW-3	Water	12/23/2019	12/24/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SW-1 (Lab Number: 9L24018-01)

<u>Analysis</u>	Method
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Iron	EPA 6010C
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-2 (Lab Number: 9L24018-02)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Iron	EPA 6010C
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8

Request for Analysis (continued)

SW-2 (Lab Number: 9L24018-02) (continued)

<u>Analysis</u>	<u>Method</u>
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-3 (Lab Number: 9L24018-03)

5W-5 (Lab Number: 5L24010-05)	
<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Iron	EPA 6010C
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994 Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA Soil Survey Laboratory Methods Manual, USDA/NCRS, 2014

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: General Chemistry

Sample: SW-1

Lab Number: 9L24018-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.2		0.1	mg/L	12/26/19	12/26/19
Kjeldahl Nitrogen	1.1		0.5	mg/L	01/02/20	01/02/20
Nitrate as N	0.0510		0.0370	mg/L	12/26/19	12/26/19
Nitrate and Nitrite as N	0.05		0.03	mg/L	12/24/19	12/24/19
Nitrite as N	ND		0.007	mg/L	12/26/19 10:40	12/26/19 10:40
Total Phosphorous	ND		0.02	mg/L	12/30/19	12/30/19
Total Nitrogen	1.15		0.500	mg/L	01/03/20	01/03/20

Results: General Chemistry

Sample: SW-2

Lab Number: 9L24018-02 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	ND		0.1	mg/L	12/26/19	12/26/19
Kjeldahl Nitrogen	1.1		0.5	mg/L	01/02/20	01/02/20
Nitrate as N	0.534		0.0370	mg/L	12/26/19	12/26/19
Nitrate and Nitrite as N	0.53		0.03	mg/L	12/24/19	12/24/19
Nitrite as N	ND		0.007	mg/L	12/26/19 10:40	12/26/19 10:40
Total Phosphorous	ND		0.10	mg/L	12/30/19	12/30/19
Total Nitrogen	1.63		0.500	mg/L	01/03/20	01/03/20

Results: General Chemistry

Sample: SW-3

Lab Number: 9L24018-03 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	ND		0.1	mg/L	12/26/19	12/26/19
Kjeldahl Nitrogen	0.4		0.1	mg/L	12/30/19	12/30/19
Nitrate as N	0.132		0.0370	mg/L	12/26/19	12/26/19
Nitrate and Nitrite as N	0.13		0.03	mg/L	12/24/19	12/24/19
Nitrite as N	ND		0.007	mg/L	12/26/19 10:40	12/26/19 10:40
Total Phosphorous	ND		0.10	mg/L	12/31/19	12/31/19
Total Nitrogen	0.530		0.100	mg/L	01/03/20	01/03/20

Results: Total Metals

Sample: SW-1

Lab Number: 9L24018-01 (Water)

Analyte	Result	Qual L	imit	Units	Date Prepared	Date Analyzed
Total Hardness	109	0	.624	mg/L	12/26/19	12/27/19
Antimony	ND	0.	0001	mg/L	12/26/19	12/30/19
Arsenic	0.0002	0.	0001	mg/L	12/26/19	12/30/19
Barium	0.019	0	.001	mg/l	12/26/19	12/30/19
Beryllium	ND	0.	0001	mg/L	12/26/19	12/30/19
Cadmium	ND	0.	0001	mg/L	12/26/19	12/30/19
Calcium	35.4	(0.25	mg/L	12/26/19	12/27/19
Chromium	0.0004	0.	0001	mg/L	12/26/19	12/30/19
Cobalt	0.0002	0.	0001	mg/L	12/26/19	12/30/19
Copper	ND	0	.001	mg/l	12/26/19	12/30/19
Iron	0.647	0	.001	mg/l	12/26/19	12/30/19
Iron	0.45	(0.25	mg/L	12/26/19	12/27/19
Magnesium	4.93	(0.25	mg/L	12/26/19	12/27/19
Mercury	ND	0.	0002	mg/L	12/26/19	12/26/19
Nickel	0.003	0	.001	mg/l	12/26/19	12/30/19
Selenium	ND	0	.005	mg/L	12/26/19	12/30/19
Silver	ND	0.	0001	mg/L	12/26/19	12/30/19
Thallium	ND	0.	0001	mg/L	12/26/19	12/30/19
Tin	ND	0	.005	mg/l	12/26/19	12/30/19
Vanadium	ND	0.	0005	mg/L	12/26/19	12/30/19
Zinc	0.005	0	.001	mg/l	12/26/19	12/30/19
Lead	0.0003	0.	0001	mg/L	12/26/19	12/30/19

Results: Total Metals

Sample: SW-2

Lab Number: 9L24018-02 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	14.2	0.125	mg/L	12/26/19	12/27/19
Antimony	ND	0.0001	mg/L	12/26/19	12/30/19
Arsenic	0.0002	0.0001	mg/L	12/26/19	12/30/19
Barium	0.006	0.001	mg/l	12/26/19	12/30/19
Beryllium	ND	0.0001	mg/L	12/26/19	12/30/19
Cadmium	ND	0.0001	mg/L	12/26/19	12/30/19
Calcium	3.34	0.05	mg/L	12/26/19	12/27/19
Chromium	0.0006	0.0001	mg/L	12/26/19	12/30/19
Cobalt	0.0005	0.0001	mg/L	12/26/19	12/30/19
Copper	ND	0.001	mg/l	12/26/19	12/30/19
Iron	0.661	0.001	mg/l	12/26/19	12/30/19
Iron	0.67	0.05	mg/L	12/26/19	12/27/19
Magnesium	1.42	0.05	mg/L	12/26/19	12/27/19
Mercury	ND	0.0002	mg/L	12/26/19	12/26/19
Nickel	0.001	0.001	mg/l	12/26/19	12/30/19
Selenium	ND	0.005	mg/L	12/26/19	12/30/19
Silver	ND	0.0001	mg/L	12/26/19	12/30/19
Thallium	ND	0.0001	mg/L	12/26/19	12/30/19
Tin	ND	0.005	mg/l	12/26/19	12/30/19
Vanadium	0.0007	0.0005	mg/L	12/26/19	12/30/19
Zinc	0.005	0.001	mg/l	12/26/19	12/30/19
Lead	0.0006	0.0001	mg/L	12/26/19	12/30/19

Results: Total Metals

Sample: SW-3

Lab Number: 9L24018-03 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	22.8	0.125	mg/L	12/26/19	12/27/19
Antimony	ND	0.0001	mg/L	12/26/19	12/30/19
Arsenic	0.0002	0.0001	mg/L	12/26/19	12/30/19
Barium	0.007	0.001	mg/l	12/26/19	12/30/19
Beryllium	ND	0.0001	mg/L	12/26/19	12/30/19
Cadmium	ND	0.0001	mg/L	12/26/19	12/30/19
Calcium	5.54	0.05	mg/L	12/26/19	12/27/19
Chromium	0.0005	0.0001	mg/L	12/26/19	12/30/19
Cobalt	0.0004	0.0001	mg/L	12/26/19	12/30/19
Copper	0.002	0.001	mg/l	12/26/19	12/30/19
Iron	0.788	0.001	mg/l	12/26/19	12/30/19
Iron	0.85	0.05	mg/L	12/26/19	12/27/19
Magnesium	2.18	0.05	mg/L	12/26/19	12/27/19
Mercury	0.0003	0.0002	mg/L	12/26/19	12/26/19
Nickel	0.001	0.001	mg/l	12/26/19	12/30/19
Selenium	ND	0.005	mg/L	12/26/19	12/30/19
Silver	ND	0.0001	mg/L	12/26/19	12/30/19
Thallium	ND	0.0001	mg/L	12/26/19	12/30/19
Tin	ND	0.005	mg/l	12/26/19	12/30/19
Vanadium	0.0005	0.0005	mg/L	12/26/19	12/30/19
Zinc	0.007	0.001	mg/l	12/26/19	12/30/19
Lead	0.0003	0.0001	mg/L	12/26/19	12/30/19

Quality Control

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BOA0073 - TKN										
Blank (B0A0073-BLK1)					Prenared 8	k Analyzed: 0	1/02/20			
Kjeldahl Nitrogen	ND		0.1	mg/L	ора. са с	x /u. / _ car o	-, 0-, -0			
Blank (B0A0073-BLK2)					Prepared 8	k Analyzed: 0	1/02/20			
Kjeldahl Nitrogen	ND		0.1	mg/L						
Batch: B9L1024 - General Cho	emistrv									
Blank (B9L1024-BLK1)	ennser y				Prenared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	ND		0.03	mg/L	rrepared	x Analyzea. 1	2/2 1/13			
Blank (B9L1024-BLK2)					Prepared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	ND		0.03	mg/L	· ·					
Blank (B9L1024-BLK3)					Prepared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	ND		0.03	mg/L						
LCS (B9L1024-BS1)					Prepared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	0.78		0.03	mg/L	0.800		97.9	90-110		
LCS (B9L1024-BS2)					Prepared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	0.76		0.03	mg/L	0.800		95.0	90-110		
LCS (B9L1024-BS3)					Prepared 8	k Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	0.79		0.03	mg/L	0.800		99.2	90-110		
Duplicate (B9L1024-DUP1)	S	Source: 9L	23042-01		Prepared 8	& Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	0.26		0.03	mg/L		0.25			5.53	200

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L1024 - General Chem	istry (Conti	inued)								
Matrix Spike (B9L1024-MS1)	9	Source: 9	L23042-01		Prepared 8	& Analyzed: 1	2/24/19			
Nitrate and Nitrite as N	1.11		0.03	mg/L	0.800	0.25	108	80-120		
Batch: B9L1104 - Nitrite										
Blank (B9L1104-BLK1)					Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	ND		0.007	mg/L	-,-	, , ,	, -, -			
Blank (B9L1104-BLK2)					Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	ND		0.007	mg/L						
LCS (B9L1104-BS1)					Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	0.110		0.007	mg/L	0.100	, , ,	110	90-110		
LCS (B9L1104-BS2)					Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	0.098		0.007	mg/L	0.100		98.0	90-110		
Duplicate (B9L1104-DUP1)	9	Source: 9	L24018-01		Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	ND		0.007	mg/L		ND				20
Matrix Spike (B9L1104-MS1)	5	Source: 9	L24018-01		Prepared 8	& Analyzed: 1	2/26/19			
Nitrite as N	0.093		0.007	mg/L	0.100	ND	93.0	80-120		
Batch: B9L1118 - Ammonia										
Blank (B9L1118-BLK1)					Prepared 8	& Analyzed: 1	2/26/19			
Ammonia	ND		0.1	mg/L	p	,				

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L1118 - Ammonia (Co	ontinued)									
Blank (B9L1118-BLK2)					Prepared 8	& Analyzed: 1	2/26/19			
Ammonia	ND		0.1	mg/L						
LCS (B9L1118-BS1)					Prepared 8	& Analyzed: 1	2/26/19			
Ammonia	1.0		0.1	mg/L	1.00		103	90-110		
LCS (B9L1118-BS2)					Prepared 8	& Analyzed: 1	2/26/19			
Ammonia	1.0		0.1	mg/L	1.00	,	99.8	90-110		
Duplicate (B9L1118-DUP1)	S	L24017-02		Prepared 8	& Analyzed: 1	2/26/19				
Ammonia	0.1		0.1	mg/L	•	0.1			5.24	20
Matrix Spike (B9L1118-MS1)	S	Source: 9	L24017-02		Prepared 8					
Ammonia	1.2		0.1	mg/L	1.00	0.1	110	80-120		
	_									
Batch: B9L1208 - Total phosph	ate									
Blank (B9L1208-BLK1)	ND		0.03	/1	Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	ND		0.02	mg/L						
Blank (B9L1208-BLK2)					Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	ND		0.02	mg/L						
LCS (B9L1208-BS1)					Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	1.02		0.02	mg/L	1.00	,	102	90-110		
LCS (B9L1208-BS2)					Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	1.03		0.02	mg/L	1.00	•	103	90-110		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L1208 - Total phosph	nate (Continu	ed)								
Duplicate (B9L1208-DUP1)	·-	-	L24014-02		Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	0.92		0.02	mg/L		0.88	_,,		4.88	20
Matrix Spike (B9L1208-MS1)	S	ource: 9	L24014-02		Prepared 8	& Analyzed: 1	2/30/19			
Total Phosphorous	1.62		0.02	mg/L	1.00	0.88	74.5	80-120		
Batch: B9L1252 - TKN										
Blank (B9L1252-BLK1)					Prenared 8	& Analyzed: 1	2/30/19			
Kjeldahl Nitrogen	ND		0.1	mg/L	Trepared	x Analyzea. 1	2/30/13			
Blank (B9L1252-BLK2)					Prepared 8	& Analyzed: 1	2/30/19			
Kjeldahl Nitrogen	ND		0.1	mg/L						
Patch: POI 1360 Tatal phocal	a ta									
Batch: B9L1269 - Total phosph Blank (B9L1269-BLK1)	iale				Dropared (& Analyzed: 1	2/21/10			
Total Phosphorous	ND		0.02	mg/L	гтератец с	x Analyzeu. 1	2/31/19			
Blank (B9L1269-BLK2)					Prepared 8	& Analyzed: 1	2/31/19			
Total Phosphorous	ND		0.02	mg/L	-	-				
LCS (B9L1269-BS1)					Prepared 8	& Analyzed: 1	2/31/19			
Total Phosphorous	1.06		0.02	mg/L	1.00		106	90-110		
LCS (B9L1269-BS2)					Prepared 8	& Analyzed: 1	2/31/19			
Total Phosphorous	1.06		0.02	mg/L	1.00		106	90-110		

			-	Control									
General Chemistry (Continued)													
			Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit			
Batch: B9L1269 - Total phosph	ate (Continu	iea)											
Batch: B9L1269 - Total phosph Duplicate (B9L1269-DUP1)	-	-	L24018-03		Prepared 8	& Analyzed: 1	2/31/19						
	-	-	0.10	mg/L	Prepared 8	& Analyzed: 1	2/31/19			20			
Duplicate (B9L1269-DUP1)	ND	Source: 9		mg/L	· 	,				20			

Quality Control (Continued)

Tota	ı	М	eta	le

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
Batch: B9L1069 - Metals Digo	estion Waters									
Blank (B9L1069-BLK1)				Pr	enared: 12/2	6/19 Analyze	d: 12/30/19			
Chromium	ND		0.0001	mg/L	ора. оа. 12,2	0, 20 7 , 20	12,00,10			
Cobalt	ND		0.0001	mg/L						
Cadmium	ND		0.0001	mg/L						
Beryllium	ND		0.0001	mg/L						
Arsenic	ND		0.0001	mg/L						
Copper	ND		0.001	mg/l						
Silver	ND		0.0001	mg/L						
Magnesium	ND		0.05	mg/L						
Calcium	ND		0.05	mg/L						
Selenium	ND		0.005	mg/L						
Barium	ND		0.001	mg/l						
Tin	ND ND		0.005	mg/l						
Iron	ND ND		0.05	mg/L						
Zinc	ND ND		0.001							
Nickel	ND ND		0.001	mg/l						
Vanadium	ND ND		0.001	mg/l						
	ND ND			mg/L						
Thallium			0.0001	mg/L						
Iron	ND		0.001	mg/l						
Antimony	ND		0.0001	mg/L						
Lead	ND		0.0001	mg/L						
LCS (B9L1069-BS1)					-	6/19 Analyze	ed: 12/27/19			
Iron	10.3		0.05	mg/L	10.0		103	85-115		
Calcium	11.0		0.05	mg/L	10.0		110	85-115		
Magnesium	10.2		0.05	mg/L	10.0		102	85-115		
LCS (B9L1069-BS2)				Pr	epared: 12/2	6/19 Analyze	ed: 12/30/19			
Cobalt	0.0203		0.0001	mg/L	0.0200		102	85-115		
Vanadium	0.0204		0.0005	mg/L	0.0200		102	85-115		
Thallium	0.0202		0.0001	mg/L	0.0200		101	85-115		
Copper	0.226		0.001	mg/l	0.200		113	85-115		
Iron	0.223		0.001	mg/l	0.200		111	85-115		
Silver	0.0200		0.0001	mg/L	0.0200		100	85-115		
Chromium	0.0206		0.0001	mg/L	0.0200		103	85-115		
Barium	0.205		0.001	mg/l	0.200		102	85-115		
Nickel	0.205		0.001	mg/l	0.200		102	85-115		
Cadmium	0.0189		0.0001	mg/L	0.0200		94.7	85-115		
Tin	0.020		0.005	mg/l	0.0200		101	85-115		
Antimony	0.0193		0.0001	mg/L	0.0200		96.4	85-115		
Beryllium	0.0195		0.0001	mg/L	0.0200		97.3	85-115		
Selenium	0.017		0.005	mg/L	0.0200		85.2	85-115		
Arsenic	0.017		0.0001	mg/L	0.0200		94.5	85-115		
Zinc	0.181		0.001		0.200		94.5	85-115		
Lead	0.0203		0.001	mg/l mg/L	0.200		102	85-115 85-115		

			-	Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B9L1073 - Metals Di	igestion Waters									
Blank (B9L1073-BLK1)				Pi	repared: 12/2	26/19 Analyze	ed: 12/30/19			
Copper	ND		0.001	mg/l						
LCS (B9L1073-BS1)				Pı	repared: 12/2	26/19 Analyze	ed: 12/30/19			
Copper	0.226		0.001	mg/l	0.200		113	85-115		
Batch: B9L1130 - Metals Co	old-Vapor Mercu	rv								
Blank (B9L1130-BLK1)		,			Prepared	& Analyzed: 1	2/26/19			
Mercury	ND		0.0002	mg/L	·	,				
LCS (B9L1130-BS1)					Prepared	& Analyzed: 1	2/26/19			
Mercury	0.0010		0.0002	mg/L	0.00100		102	85-115		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

CHAIN OF CLISTODY BECORD		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTAINERS V E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Date/Time Laboratory Remarker Special Instructions: Temp. received:	Date/Time	Signature) DataTime (2/24/1) 9:16
INC.	FLTERNATE MONITOR	ORP.	SAMPLE I.D.	SW-1	5w-2				Date/Time Received by: (Signature)	Date-Time Received by: (Signature)	Date/Time Received for Leboratory by
9 L 2 4018 P	39.01	CLIENT PARE CORP. REPORT TO: Hahrson @ Dare. INVOICE TO: A-1-01/1-11/1	. I	× (21/2)					Sampled by: (Signature)	Relinquiered by: (Signature)	Relinquished by (Stenfature)

**Netlab subcontracts the following tests: Radiologicals, Radon Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

Page 21 of 21

APPENDIX E

December Field Sampling Data Sheets

PROJECT NAME: PARE PROJECT NO.	TIVERTON LANDFILL : 94139.24	DATE: WEATHER:	12/23/2019 Sunny 50s				
WELL ID: OW-9	-	DIAMETER	(INCHES): 2				
PURGE DATA							
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	15.9 feet 0.5 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-				
WATER LEVEL DATA	Δ						
DEPTH: MEASURE POINT:	13.7 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator				
FIELD TESTING RES	FIELD TESTING RESULTS						
	READING 1	REA	DING 2				
pH: SPEC. COND: TEMPERATURE:	6.24 pH UNITS 0.081 mS/cm 10.4 °C	6.24 0.086 10.4	pH UNITS _mS/cm _°C				
NOTES:							
Samples were noted as generally clear and low in turbidity based on visual inspections of samples. Samples were collected at 3:00 PM.							
Methane Reading (%							

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	12/23/2019 Sunny 50s	
WELL ID: OW-12	_	DIAMETER ((INCHES): 2	
PURGE DATA				
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.1 feet 2.0 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-	
WATER LEVEL DATA				
DEPTH: MEASURE POINT:	2.8 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator	
FIELD TESTING RESULT	<u>S</u>			
	READING 1	READ	ING 2	
pH: SPEC. COND: TEMPERATURE:	6.33 pH UNITS mS/cm 10.7 °C	6.33 0.385 10.6	_pH UNITS _mS/cm _°C	
NOTES:				
Samples were noted as ge	nerally clear and low in turl	bidity based on visual insp	ections of samples.	
Samples were collected at	2:00 PM.			
Methane Reading (% LEL)	: 0			

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL DATE: 94139.24 WEATH		DATE: WEATHER:	12/23/2019 Sunny 50s			
WELL ID: OW-7	_			DIAMETER ((INCHES): 2		
PURGE DATA							
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	N/a N/a Perista	feet gallons altic pump		E POINT: ATE (GPM): TIME (MIN):	Top of Casing N/a N/a		
WATER LEVEL DATA							
DEPTH: MEASURE POINT:	0.00 Top (feet of Casing	ELEVATION: DEVICE:		See Site Plan Water Level Indicator		
FIELD TESTING RESULT	<u>S</u>						
	REA	DING 1		READ	READING 2		
pH: SPEC. COND: TEMPERATURE:	N/a N/a N/a	pH UNITS mS/cm °C		N/a N/a N/a	pH UNITS mS/cm °C		
NOTES:							
Samples were unable to be	e collected	due to the well	being frozen.				
Methane Reading (% LEL)	: 0						

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	12/23/2019 Sunny 50s	
WELL ID: OW-13	_	DIAMETER	(INCHES): 2	
PURGE DATA				
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	14.5 feet 1.70 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-	
WATER LEVEL DATA				
DEPTH: MEASURE POINT:	4.1 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator	
FIELD TESTING RESULT	<u>S</u>			
	READING 1	READ	ING 2	
pH: SPEC. COND: TEMPERATURE:	6.61 pH UNITS mS/cm 9.6 °C	6.62 1.033 9.7	_pH UNITS _mS/cm _°C	
NOTES:				
Samples were noted as ge	nerally clear and low in tu	rbidity based on visual insp	ections of samples.	
Samples were collected at	4:00 PM.			
Methane Reading (% LEL)	: 0			

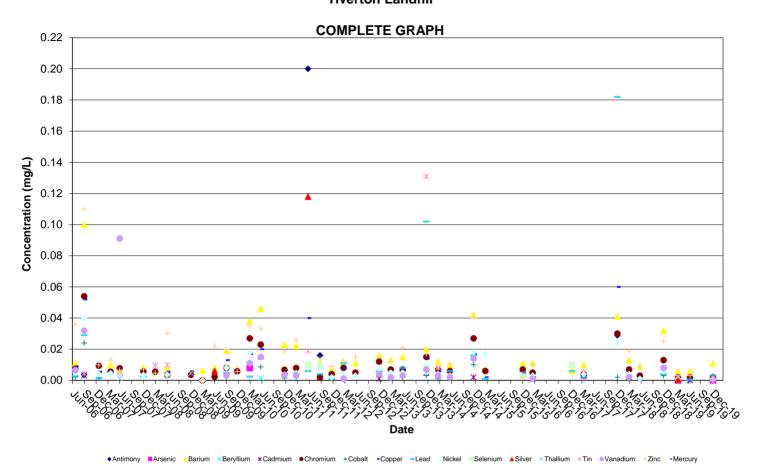
PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	12/23/2019 Sunny 50s
WELL ID: OW-14	_	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	10.7 feet 0.8 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	5.3 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.42 pH UNITS 1.305 mS/cm 9.4 °C	6.43 1.29 9.3	_pH UNITS _mS/cm _°C
NOTES:			
_	nerally clear and low in turb		ections of
Samples were collected at			
Methane Reading (% LEL)			

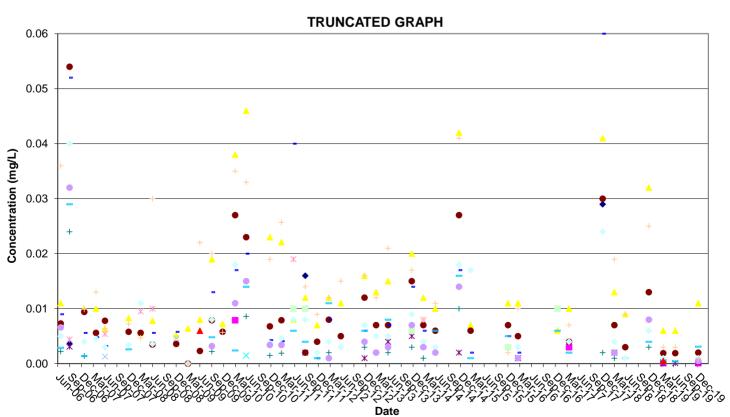
PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	12/23/2019 Sunny 50s
WELL ID: OW-15	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.9 feet 1.7 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	7.1 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.66 pH UNITS 1.095 mS/cm 11.3 °C	6.66 1.111 11.4	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in tur	rbidity based on visual insp	ections of samples.
Samples were collected at	10:00 AM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME: PARE PROJECT NO.:		TIVERTON LANDFILL 94139.24			DATE: WEATHER:	12/23/2019 Sunny 50s	
WELL ID:	OW-16	-			DIAMETER ((INCHES): _	2
PURGE DATA							
WELL DEPTH: PURGE VOLUME PURGER TYPE:	E (GAL):	N/a N/a Perista	feet gallons altic pump		E POINT: ATE (GPM): TIME (MIN):	Top of C	a
WATER LEVEL [<u>DATA</u>						
DEPTH: MEASURE POIN	T:	0.00 Top o	feet of Casing	ELEVATION: DEVICE:		See Site Plan Water Level Indicator	
FIELD TESTING	RESULTS	<u> </u>					
		READING 1			READ	DING 2	
pH: SPEC. COND: TEMPERATURE	:	N/a N/a N/a	pH UNITS mS/cm °C		N/a N/a N/a	pH UNITS mS/cm °C	
NOTES:							
Samples were un	able to be	collected	due to the well	being frozen.			
Methane Reading) (% LEL):	0					

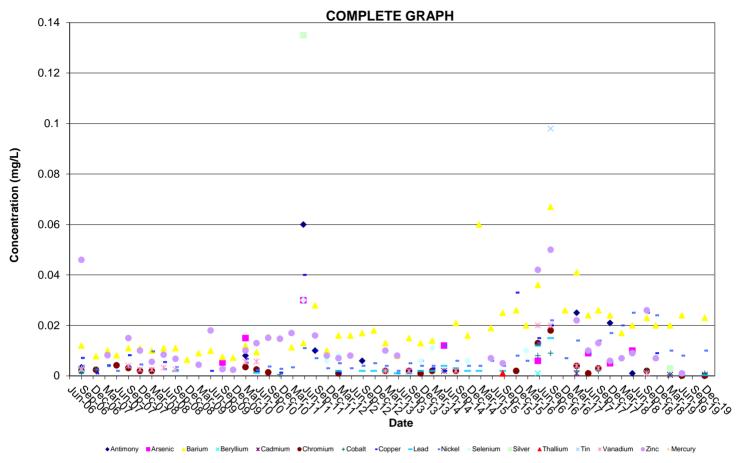
PROJECT NAME: TIVERTON LANDFILL DATE: 12/23/2019 PARE PROJECT NO.: 94139.24 WEATHER: Sunny 50s **FIELD TESTING RESULTS:** SURFACE WATER LOCATION: SW-1 **READING 1** pH: 6.60 pH UNITS SPEC. COND: 0.405 mS/cm TEMPERATURE: 2.8 $^{\circ}C$ SW-2 SURFACE WATER LOCATION: **READING 1** pH: 5.04 pH UNITS SPEC. COND: 0.224 mS/cm ٥С TEMPERATURE: 4.8 SURFACE WATER LOCATION: SW-3 **READING 1** pH: pH UNITS 7.26 SPEC. COND: 0.188 mS/cm ٥С TEMPERATURE: 1.7

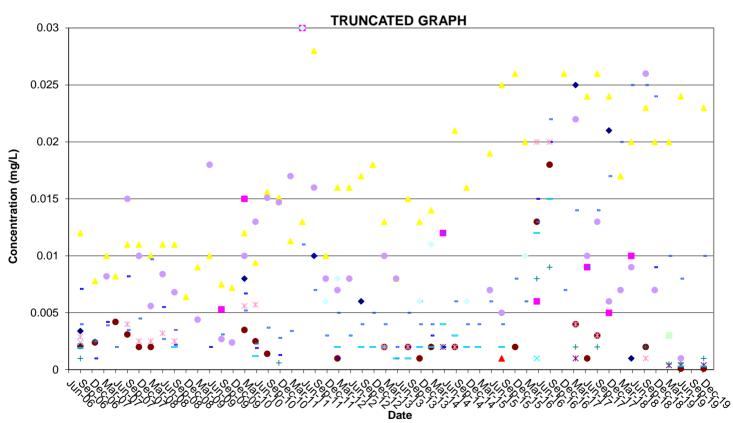
NOTES:

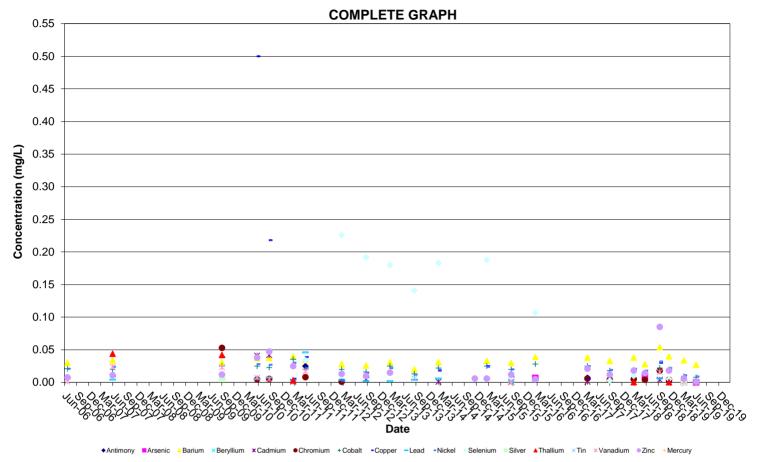

All surface water samples were clear with a brownish tinge.

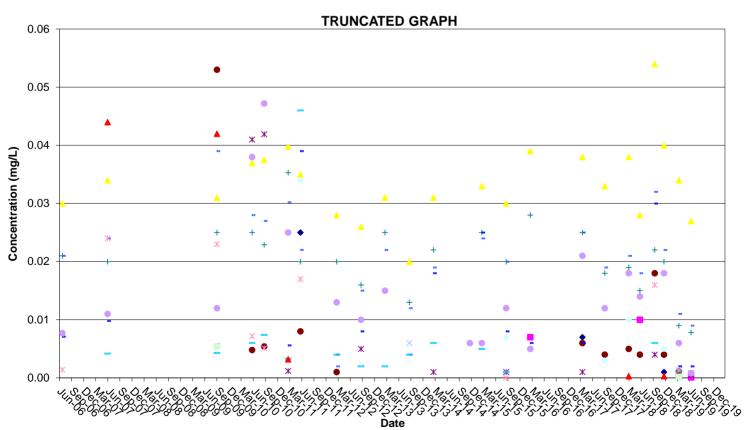

APPENDIX F

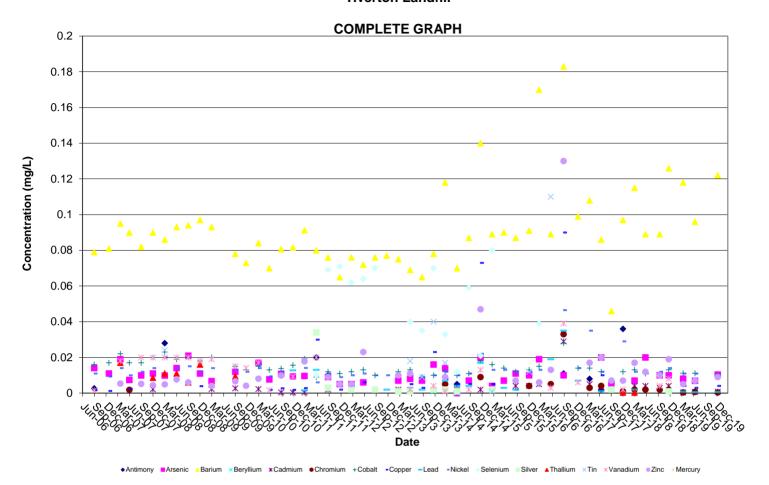
Historical Data Summary Plots

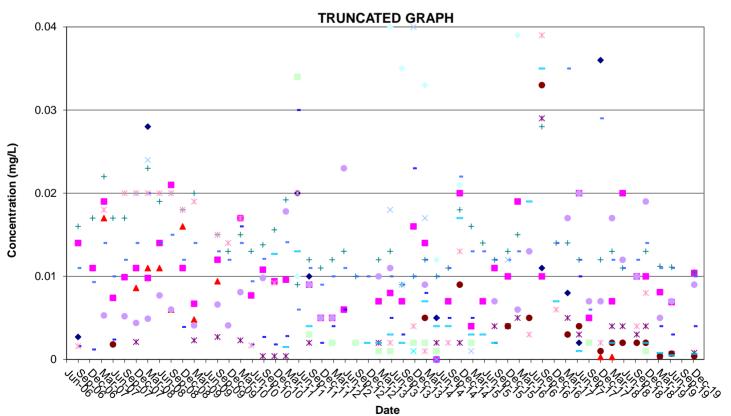


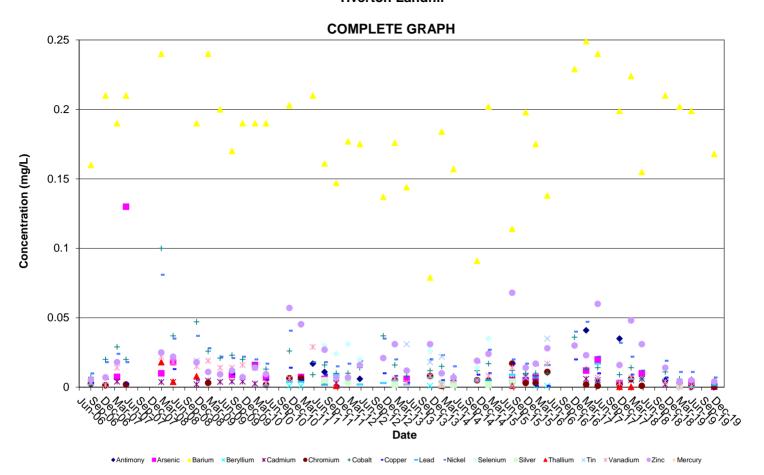

Detected Appendix A Metals in OW-9 Tiverton Landfill

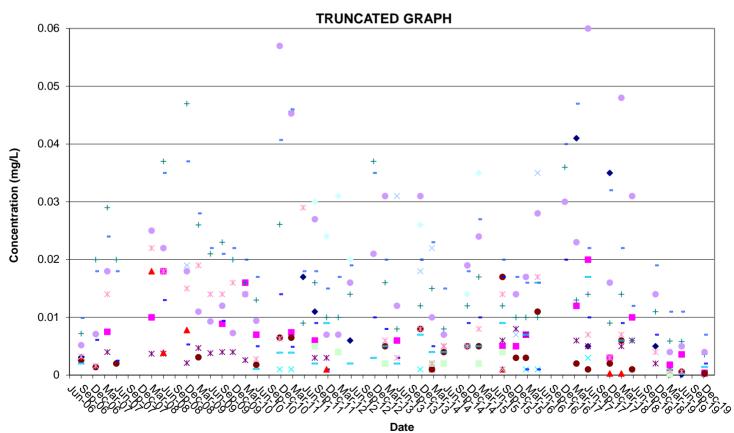


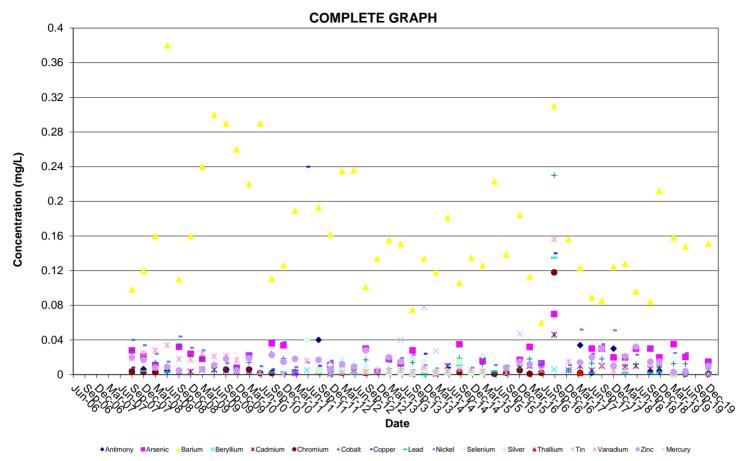

Detected Appendix A Metals in OW-12 Tiverton Landfill

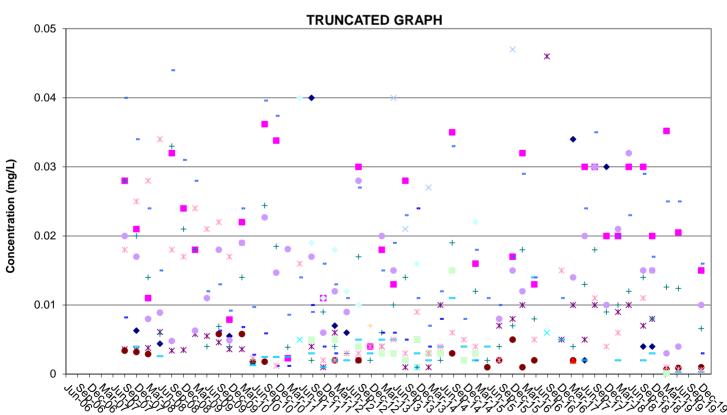


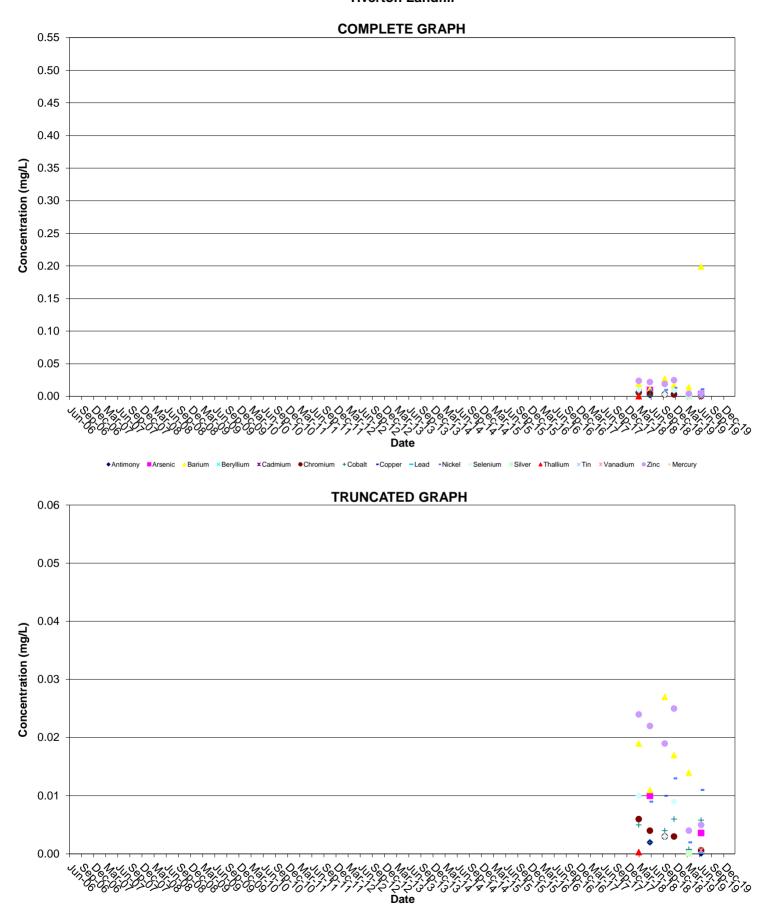

Detected Appendix A Metals in OW-7 Tiverton Landfill

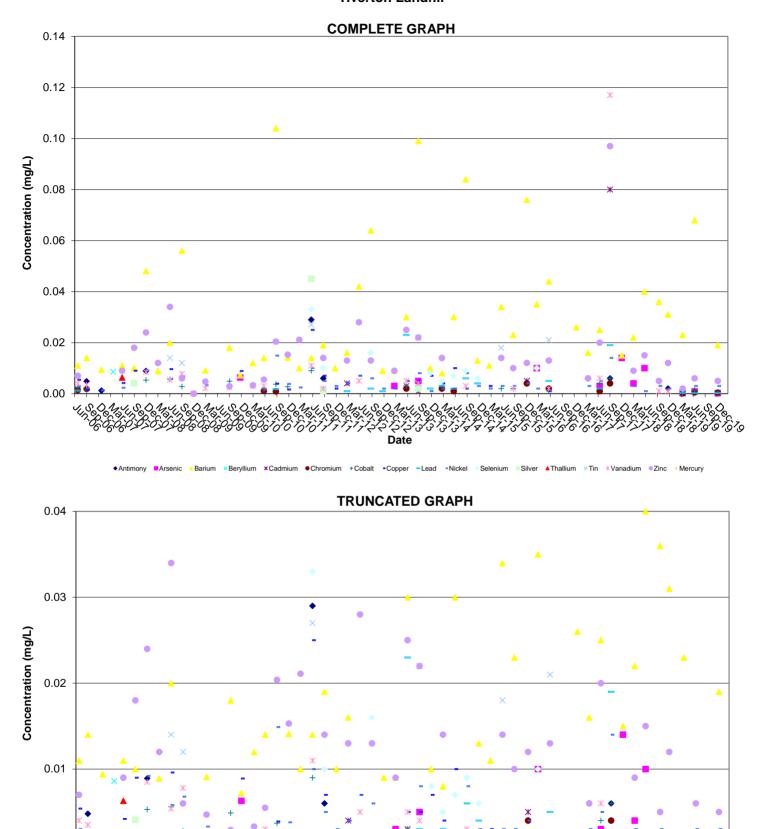



Detected Appendix A Metals in OW-13 Tiverton Landfill




Detected Appendix A Metals in OW-14 Tiverton Landfill


Detected Appendix A Metals in OW-15 Tiverton Landfill

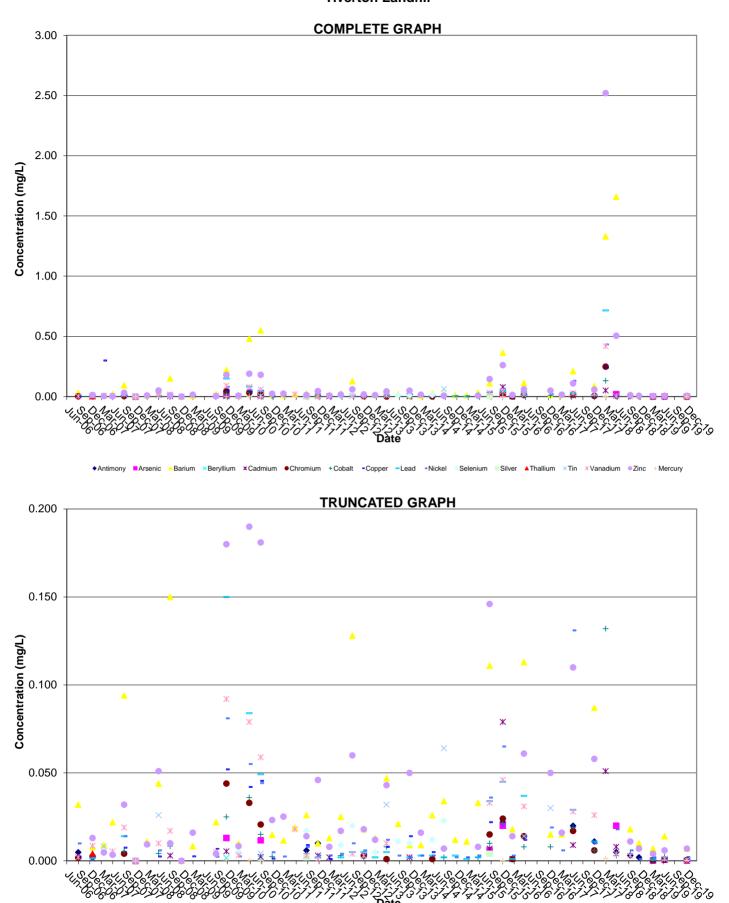


Date

Detected Appendix A Metals in OW-16 Tiverton Landfill



Detected Appendix A Metals at Surface Water Sampling Location SW-1 Tiverton Landfill



0.00

Detected Appendix A Metals at Surface Water Sampling Location SW-2 Tiverton Landfill

Detected Appendix A Metals at Surface Water Sampling Location SW-3 Tiverton Landfill

APPENDIX G

Tolerance Interval Statistical Evaluation

TABLE 4 SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON DEC 2019 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

NT NT NT NT NT NT NT NT NT

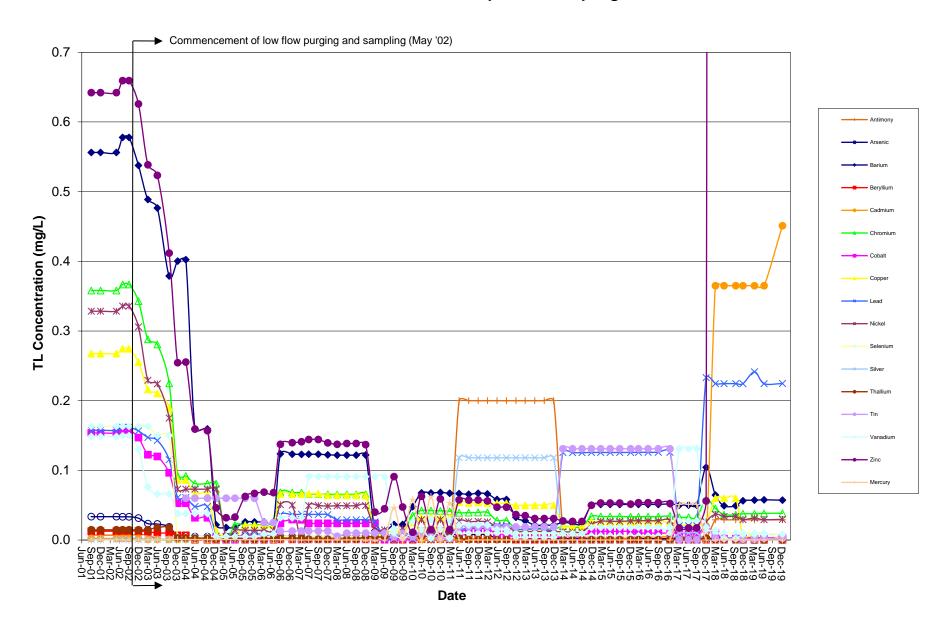
> NT NT NT

> NT

	Concentiation (units as specified for Threshold Value)									
		OW-9 Tolerance Limit *	<u>Threshold</u>	Background Well		C	Compliance wells	6		
	<u>Parameter</u>	TL=AVG+K*S	<u>Value</u>	OW-9	OW-7	OW-12	OW-13	OW-14	OW-15	o
METALS	Antimony	0.0290 mg/L	0.006 mg/L1	ND	NT	ND	ND	0.0002	ND	
	Arsenic	0.0030 mg/L	0.010 mg/L1	0.0001	NT	ND	0.0104	0.0004	0.0150	
	Barium	0.0572 mg/L	2 mg/L ¹	0.011	NT	0.023	0.122	0.168	0.151	
	Beryllium	0.0003 mg/L	0.004 mg/L ¹	ND	NT	ND	ND	ND	ND	
	Cadmium	0.4511 mg/L	0.005 mg/L ¹	0.0002	NT	0.0004	0.0008	0.0002	ND	
	Chromium	0.0384 mg/L	0.1 mg/L ¹	0.0020	NT	0.0001	0.0004	0.0003	0.0010	
	Cobalt	0.0041 mg/L	0.73 mg/L ⁵	0.0004	NT	0.001	0.0105	0.0036	0.0066	
	Copper	0.0080 mg/L	1.3 mg/L1	ND	NT	ND	0.004	0.002	0.003	
	Lead	0.2246 mg/L	0.015 mg/L ¹	0.0031	NT	0.0003	0.0007	0.0014	0.0003	
	Mercury	0.0001 mg/L	0.002 mg/L ¹	ND	NT	ND	ND	ND	ND	
	Nickel	0.0297 mg/L	0.1 mg/L ²	0.001	NT	0.010	0.010	0.007	0.016	
	Selenium	0.0010 mg/L	0.05 mg/L ¹	ND	NT	ND	ND	ND	ND	
	Silver	0.0005 mg/L	0.1 mg/L ^{2,3}	ND	NT	ND	ND	ND	ND	
	Thallium	0.0001 mg/L	0.002 mg/L ¹	ND	NT	ND	ND	ND	ND	
	Tin	0.0025 mg/L	22 mg/L ⁵	ND	NT	ND	ND	ND	ND	
	Vanadium	0.0080 mg/L	0.26 mg/L ⁵	0.0005	NT	ND	ND	ND	0.0006	
	Zinc	13.7198 mg/L	2 - 5 mg/L ^{2,3}	0.001	NT	ND	0.009	0.004	0.010	
VOC'S	Acetone		610 μg/L°							
	Acrylonitrile		0.039 μg/L°							
	Benzene		5 μg/L¹							
	Bromochloromethane		80 μg/L²							
	Bromodichloromethane (THM)		90 μg/L ¹							
	Bromoform Carbon disulfide		80 μg/L¹ 1000 μg/L⁵							
	Carbon distillide Carbon tetrachloride		1000 μg/L 5 μg/L¹							
	Chlorobenzene		100 μg/L¹							
	Chloroethane		4.6 μg/L°							
	Chloroform		80 μg/L¹							
	Chlorodibromomethane (THM)		80 μg/L ¹							
	1,2-Dibromo-3-chloropropane (DBCP)		0.2 μg/L ¹							
	1,2-Dibromoethane (EDB)		0.05 μg/L ¹							
	1,2-Dichlorobenzene		600 μg/L ¹							
	1,4-Dichlorobenzene		75 μg/L¹							
	trans-1,4-Dichloro-2-butene		μg/L							
	1,1 -Dichloroethane		5 μg/L							
	1,2-Dichloroethane		5 μg/L¹							
	1,1-Dichloroethylene		7 μg/L¹							
	cis-1,2-Dichloroethene		70 μg/L¹							
	trans-1,2-Dichloroethene		100 μg/L¹ 5 μg/L¹							
	1,2-Dichloropropane cis-1,3-Dichloropropene		5 μg/L							
	trans-1,3-Dichloropropene		μg/L							
	Ethylbenzene		700 μg/L¹							
	Methyl butyl ketone(2-Hexanone)		160 μg/L°							
	Bromomethane		10 μg/L ²							
	Chloromethane		30 μg/L ²							
	Dibromomethane		61 μg/L°							
	Methylene chloride		5 μg/L¹							
	Methyl ethyl ketone(2-Butanone)		4000 μg/L ²							
	Methyl iodide		μg/L							
	4-Methyl-2-pentanone		μg/L							
	Styrene		100 μg/L ¹							
	1,1,1,2-Tetrachloroethane		70 μg/L² 0.3 μg/L²							
	1,1,2,2-Tetrachloroethane Tetrachloroethylene(PCE)		0.3 μg/L 5 μg/L¹							
	Toluene		5 μg/L 1000 μg/L¹							
	1,1,1-Trichloroethane		200 μg/L ¹							
	1,1,2-Trichloroethane		200 μg/L 5 μg/L¹							
	Trichloroethylene(TCE)		5 μg/L¹							
	Trichloroflouromethane		2000 μg/L ²							
	1,2,3-Trichloropropane		40 μg/L ²							
	Vinyl acetate		410 μg/L ⁵							
	Vinyl chloride		2 μg/L ¹							
	Xylenes		10000 μg/L ¹							
	Mothyl tort butyl other (MTDE)		20 40 μα/1 4							

- Methyl tert-butyl ether (MTBE) 20 40 µg/L^a

 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit.
- However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

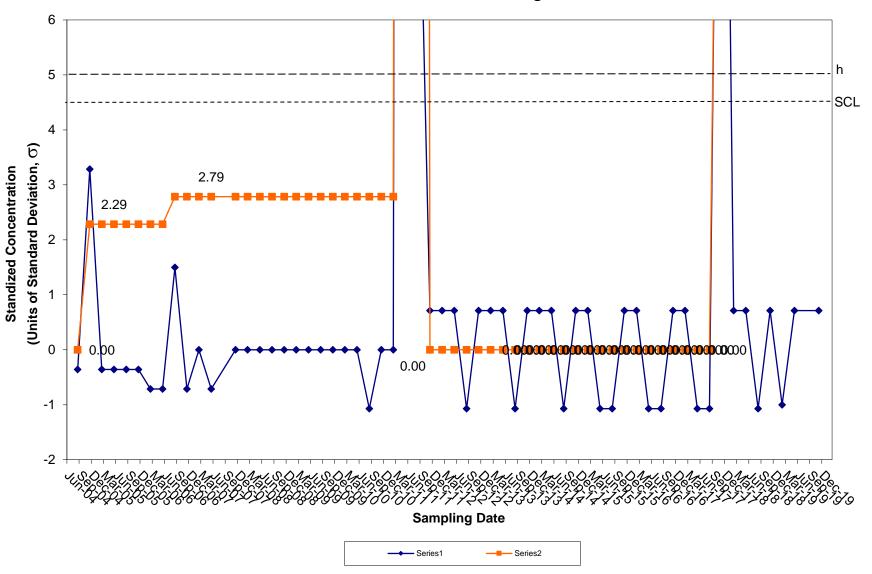

No threshold value has been provided for parameters not identified in the sources listed above

" " = Exceedance of TL

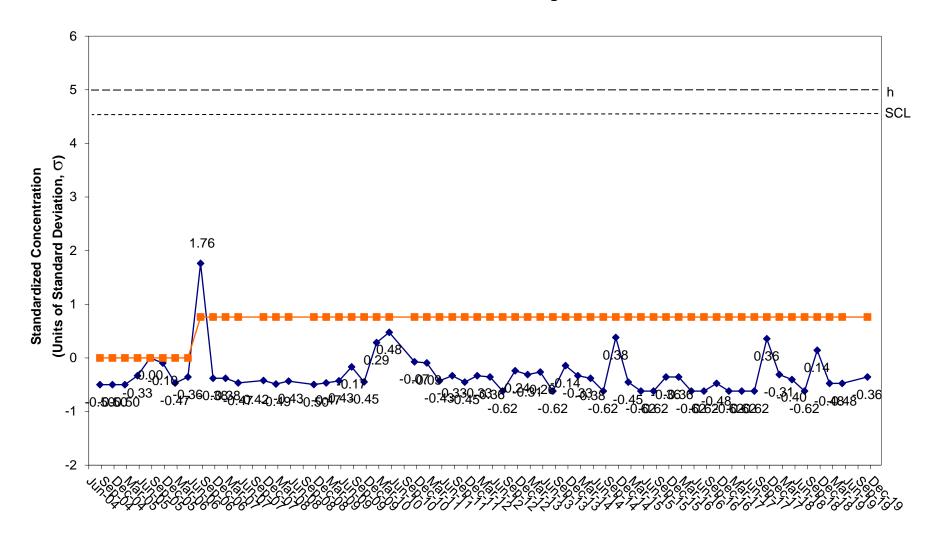
ND = Not Detected

^{*} Tolerance Limit (TL) constructed from background (upgradient) well data from OW-9.

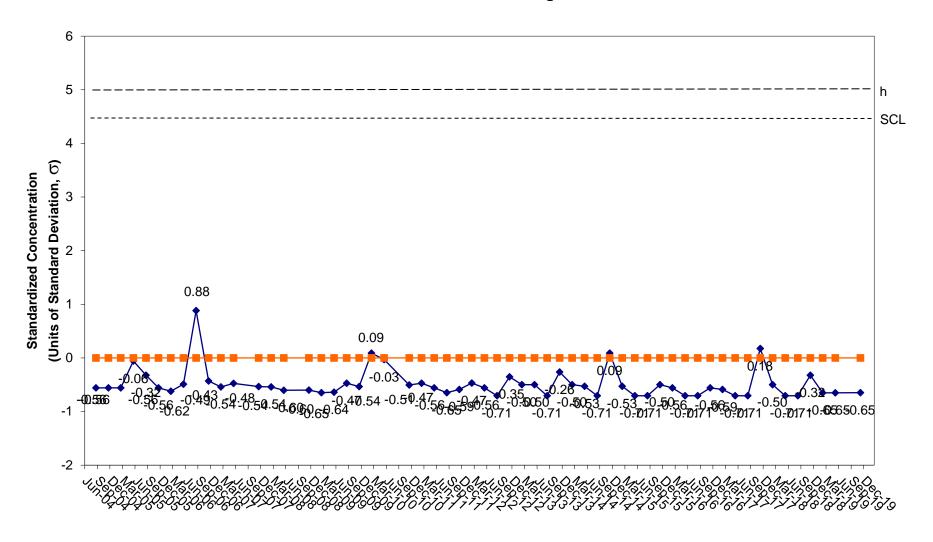
Historical Tolerance Limit Concentrations from Background Well Tiverton Landfill Compliance Sampling



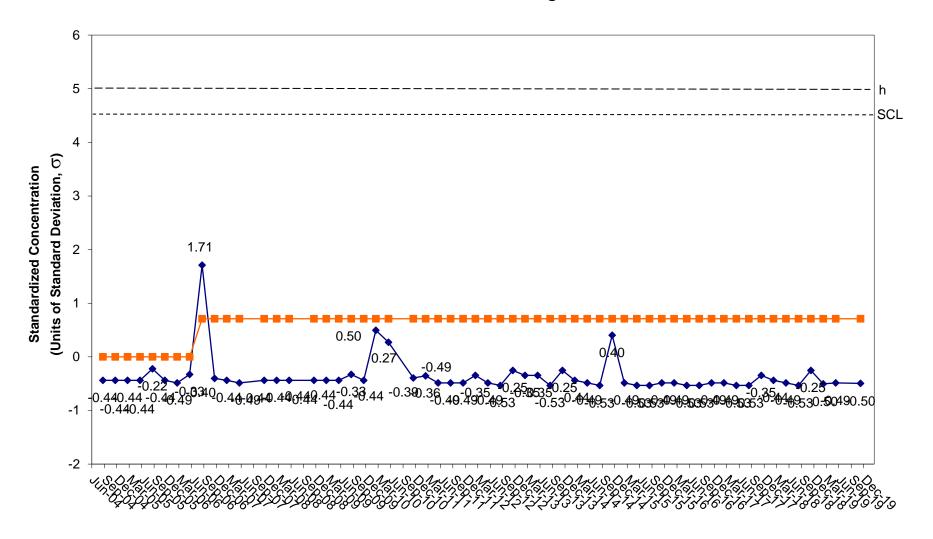
APPENDIX H


Cusum Method Statistical Evaluation

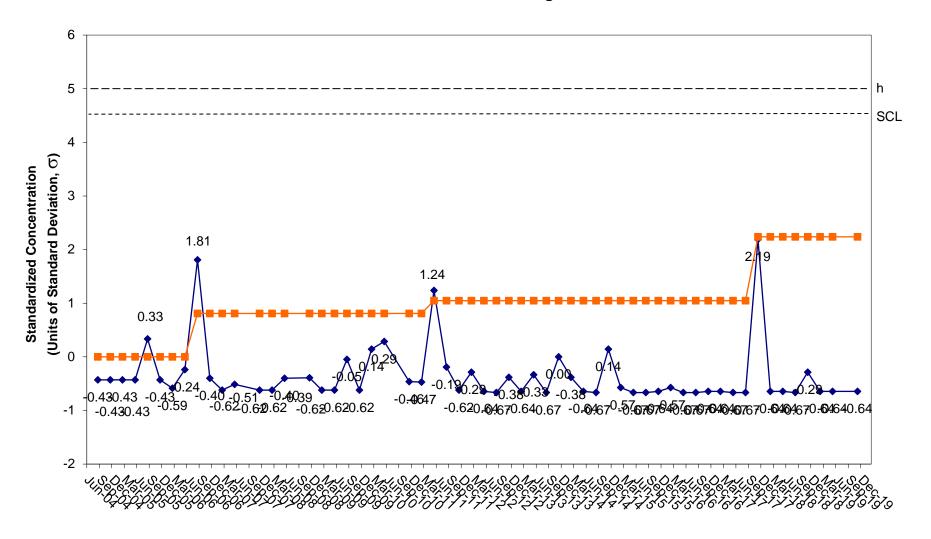
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Background Well OW-9



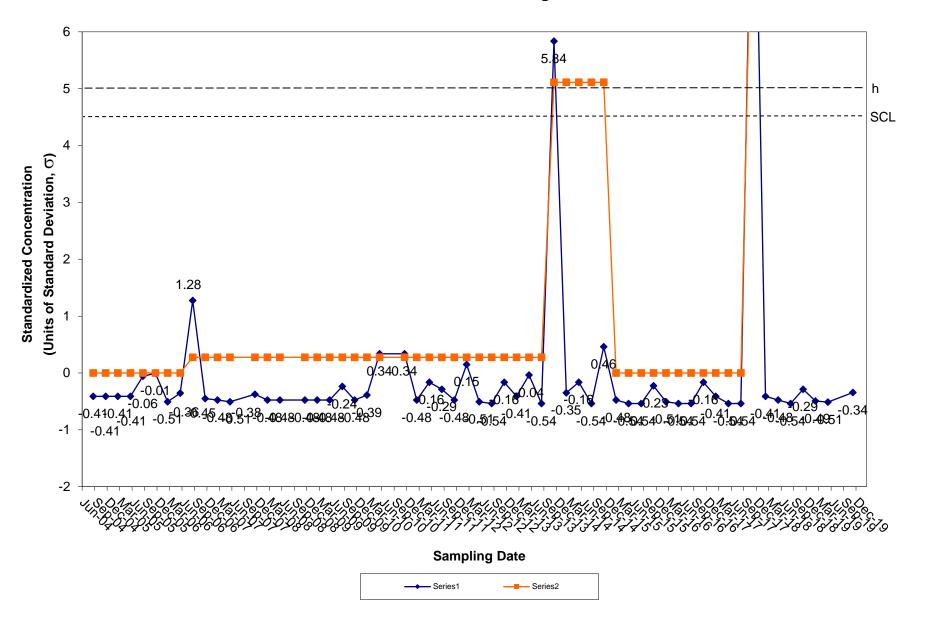
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-9



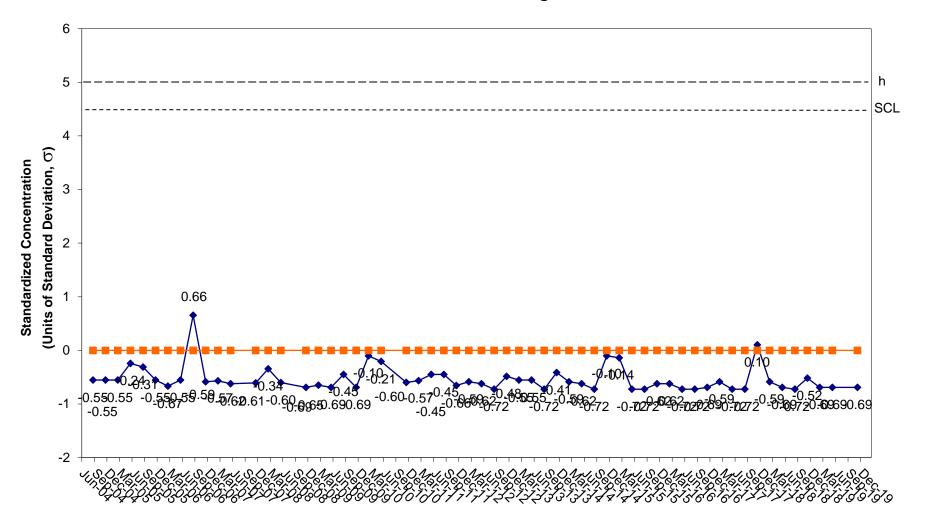
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-9



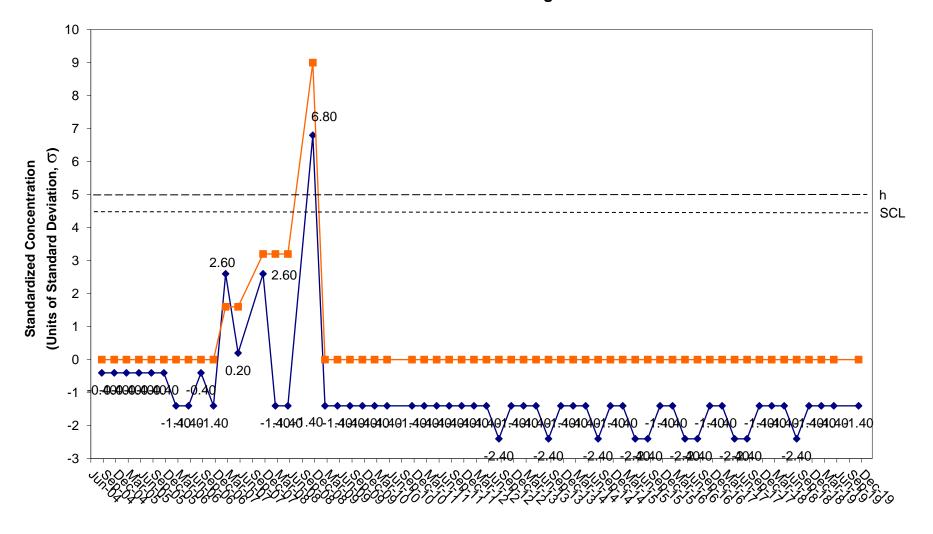
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Background Well OW-9



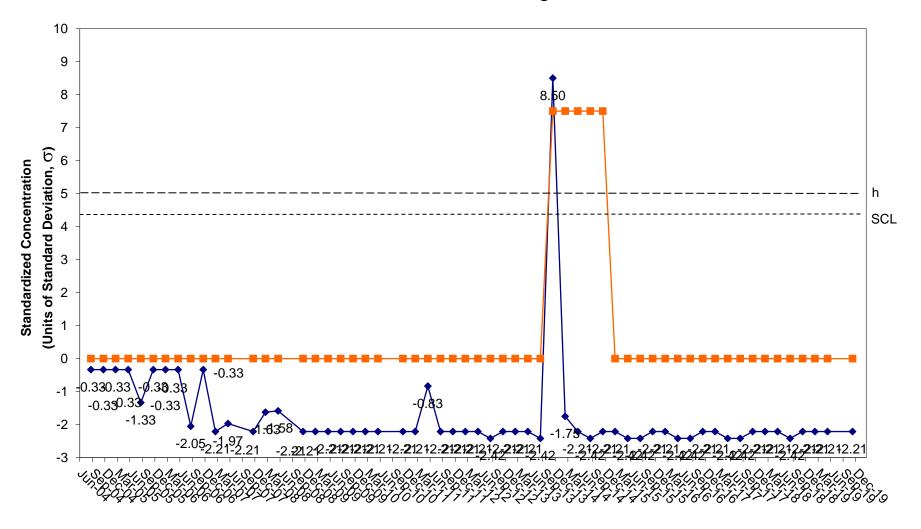
CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-9



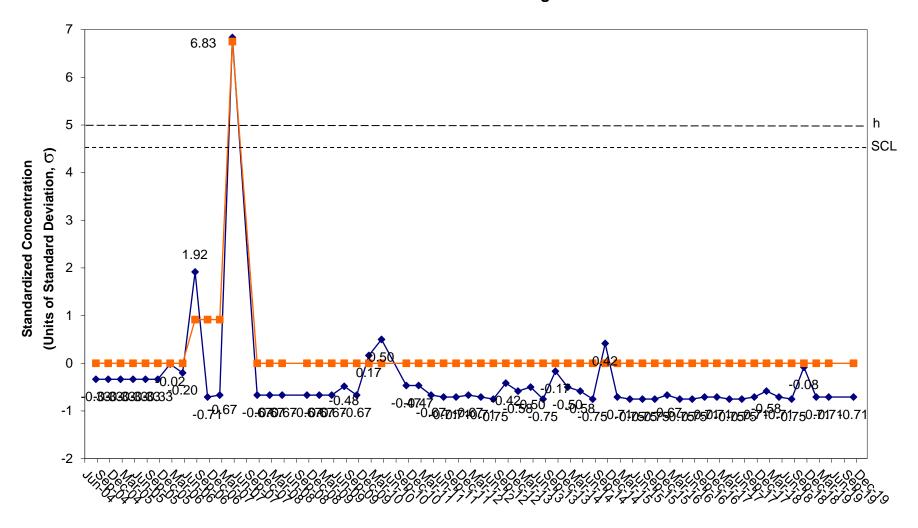
CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-9



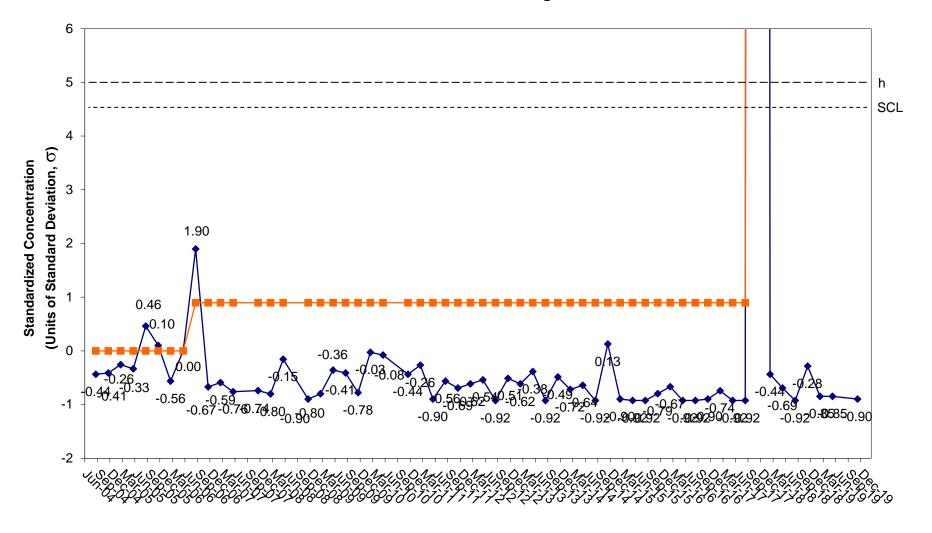
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-9



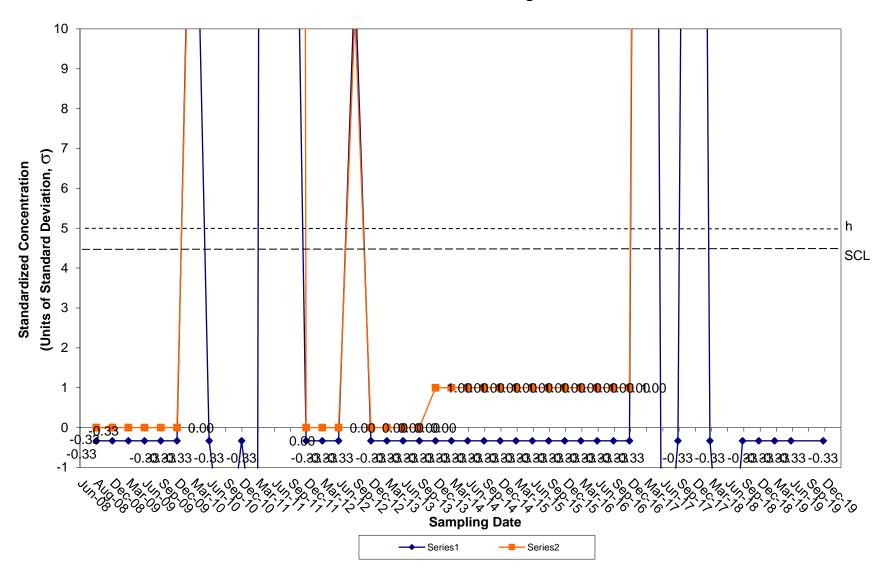
CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Background Well OW-9



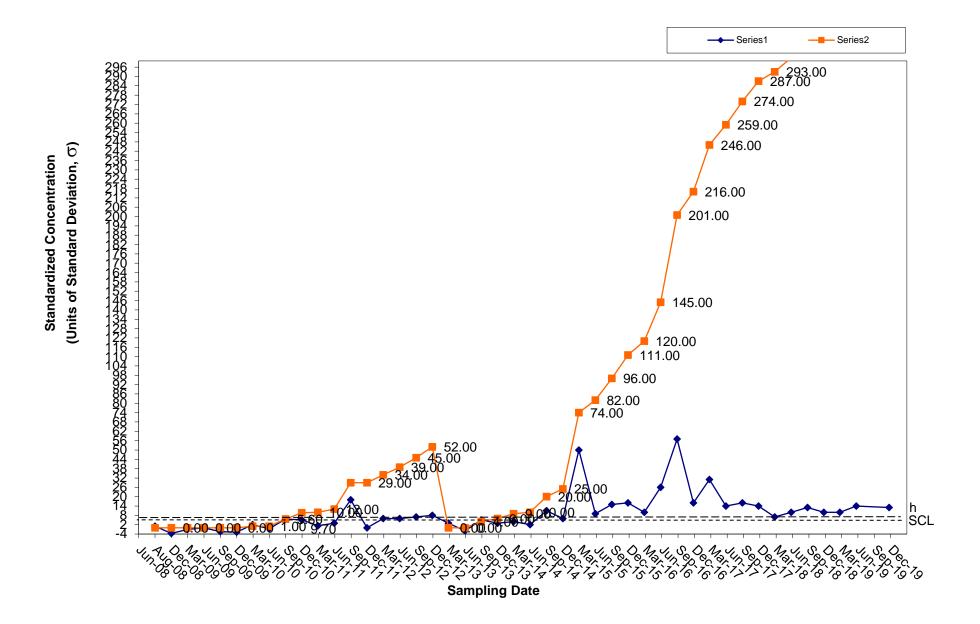
CUSUM Control Chart for Tin Tiverton Landfill Groundwater Background Well OW-9

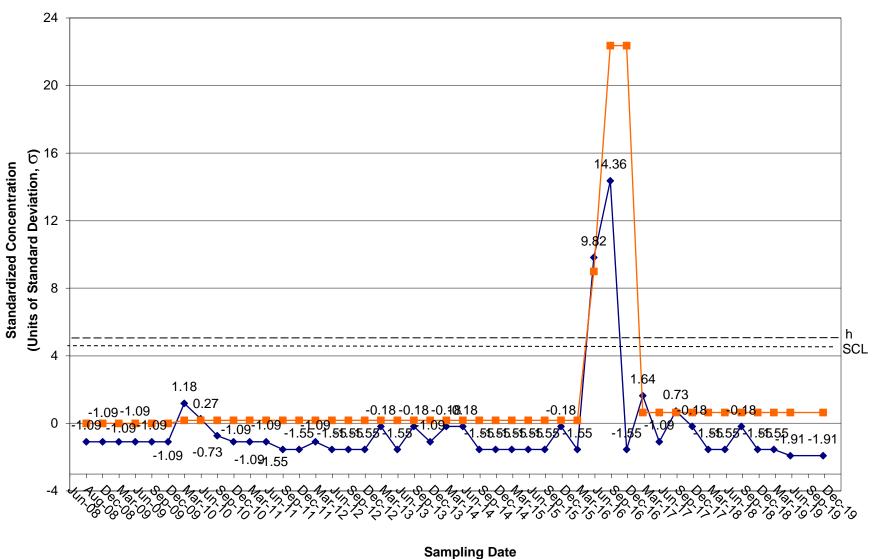


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-9

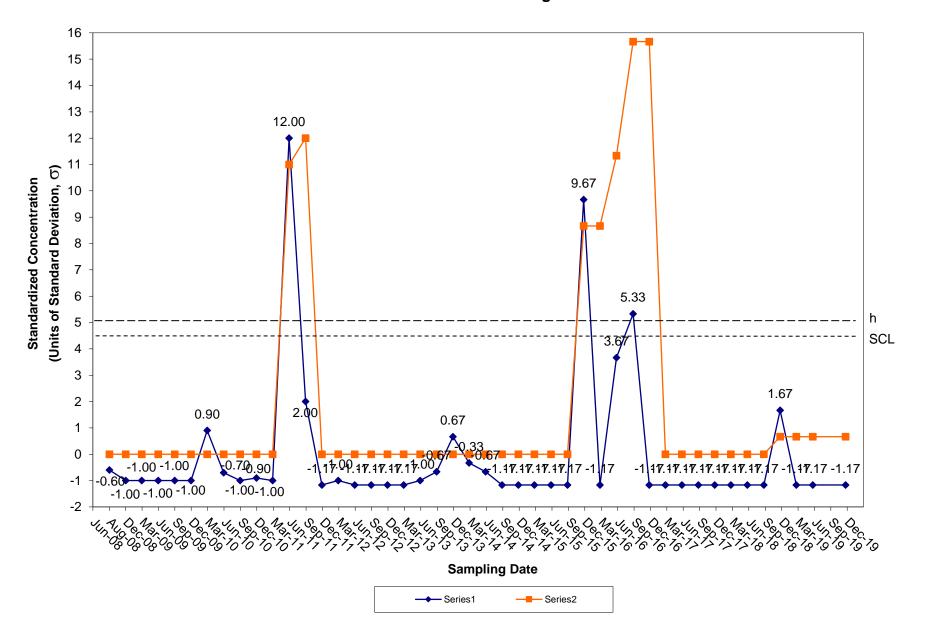


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-9

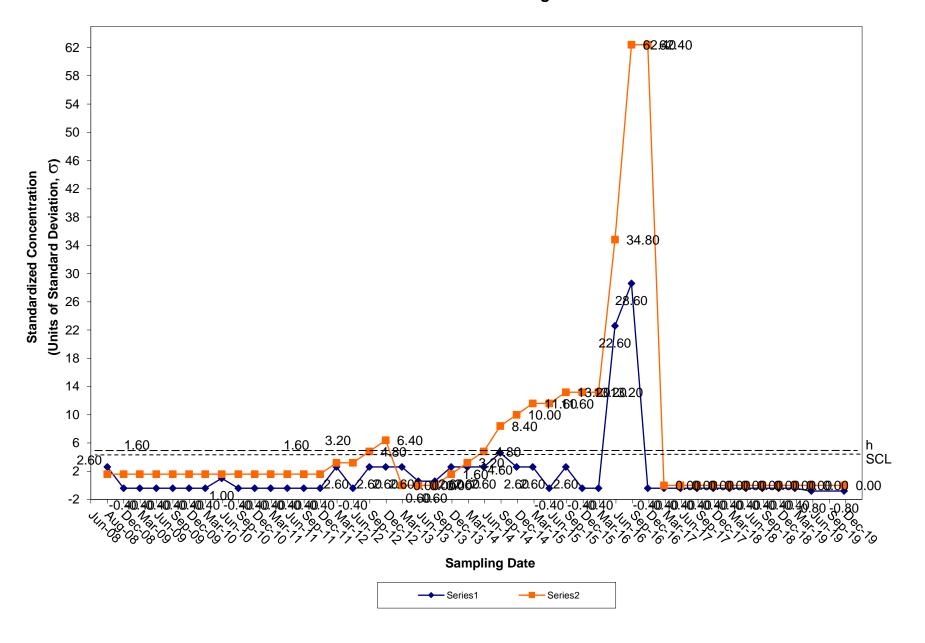


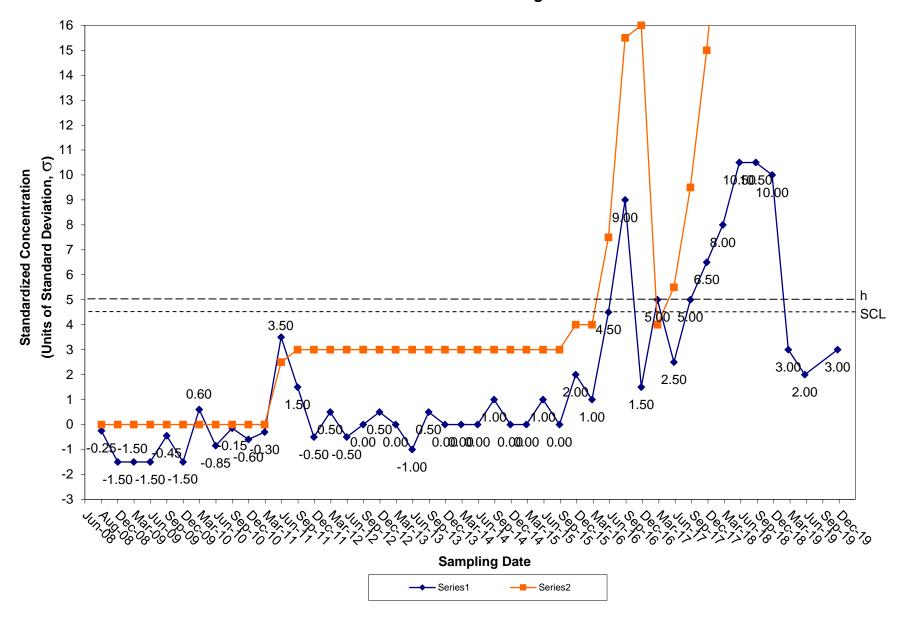

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Background Well OW-12

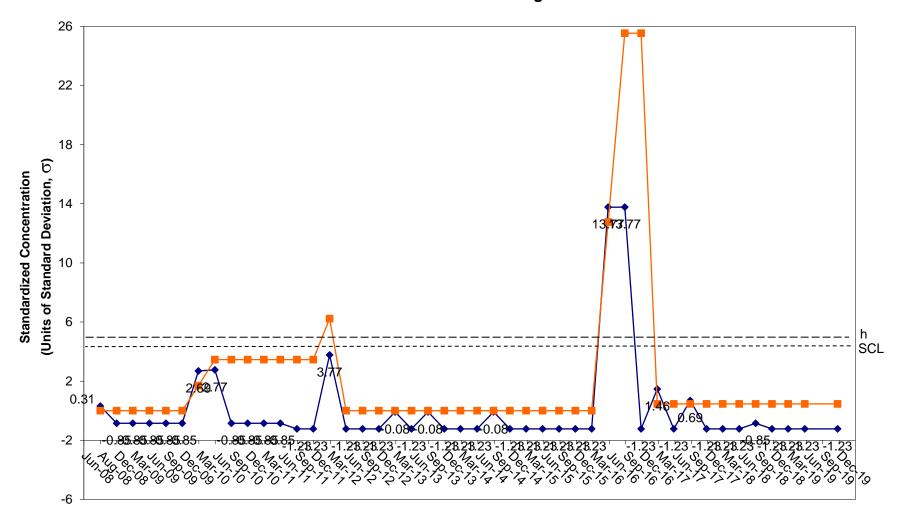
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-12



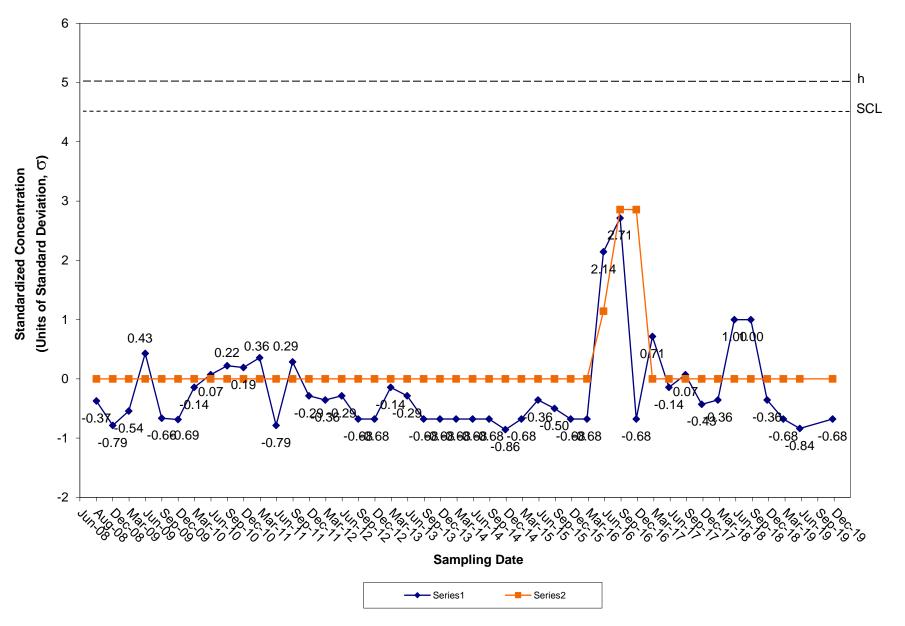
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-12



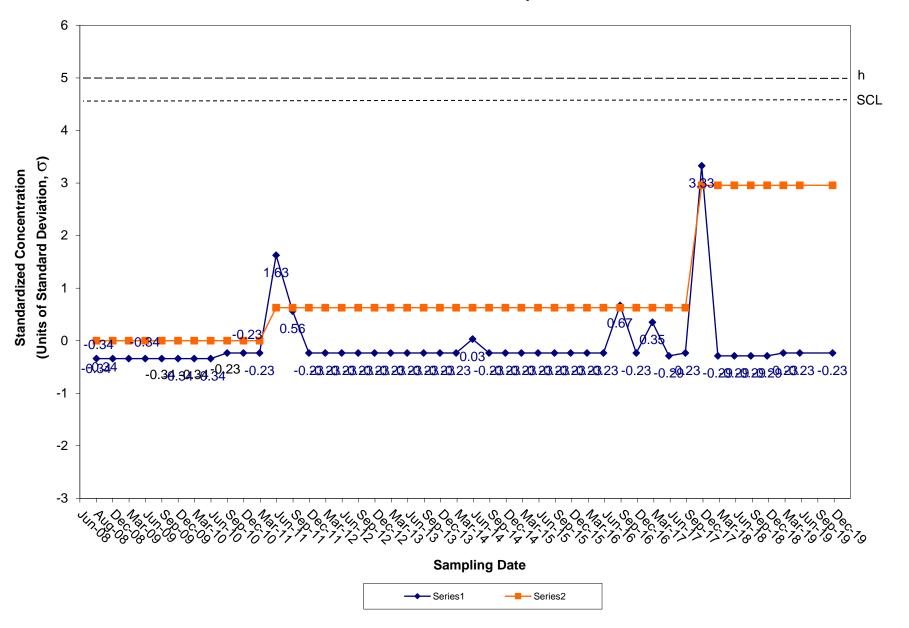

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-12

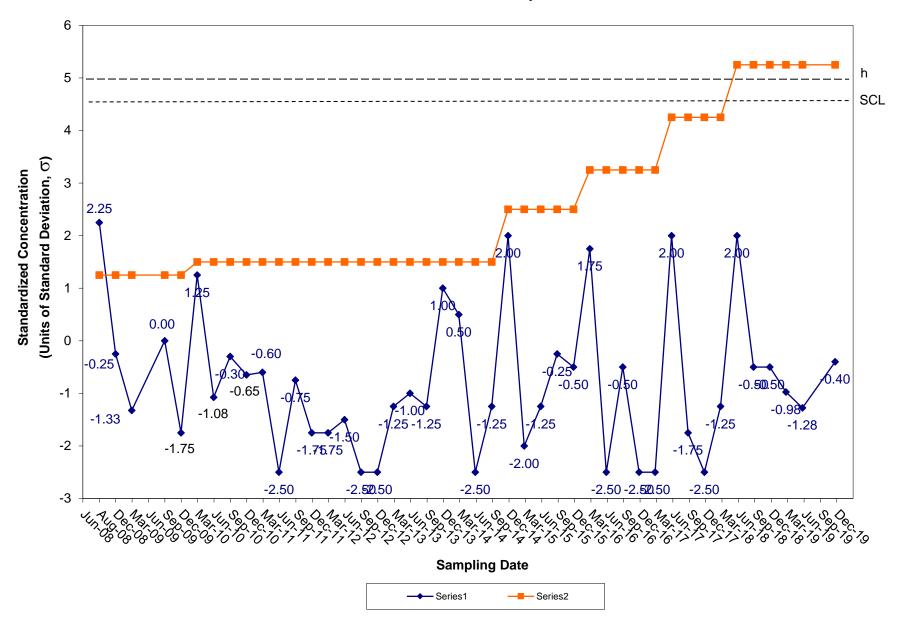

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-12

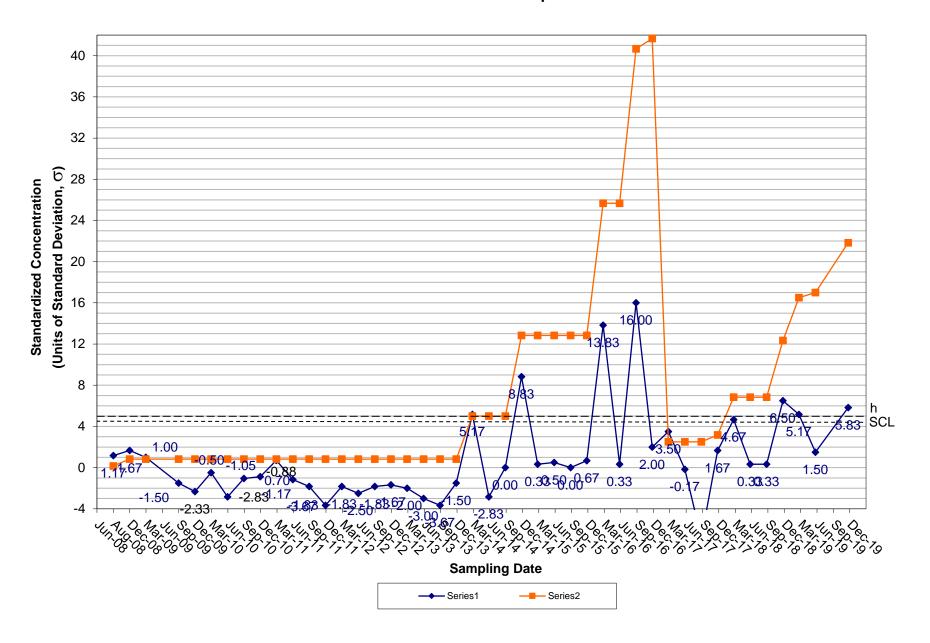
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-12

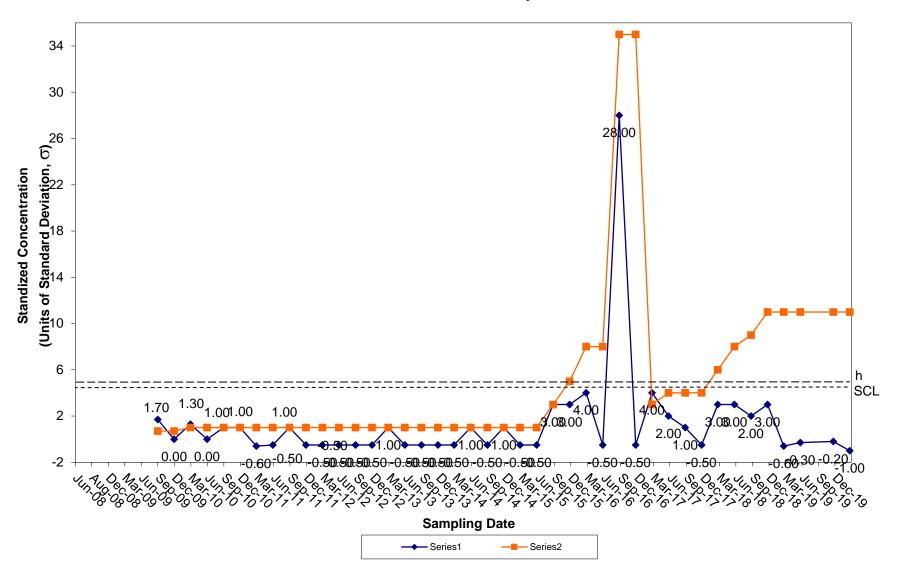


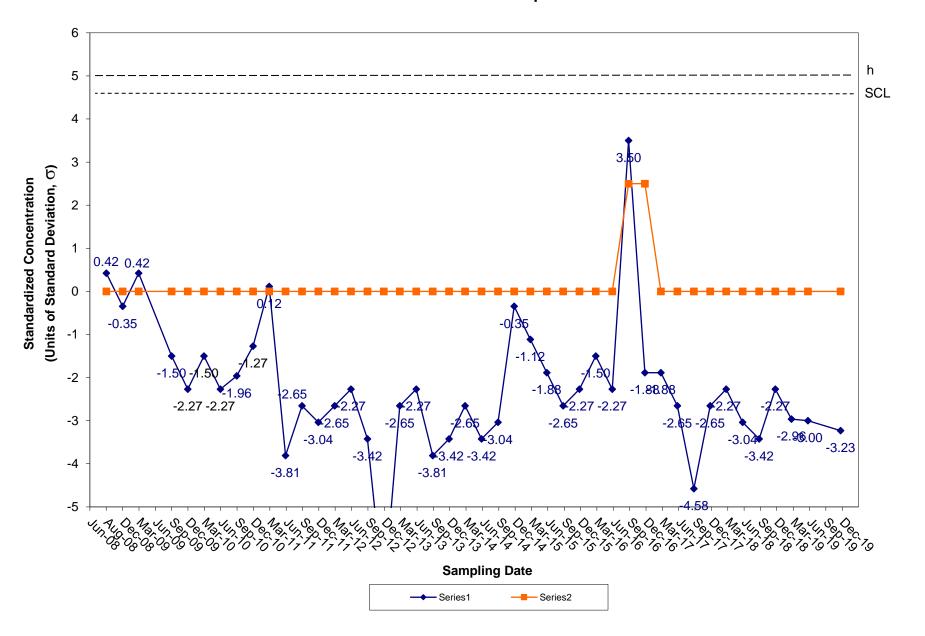
CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-12

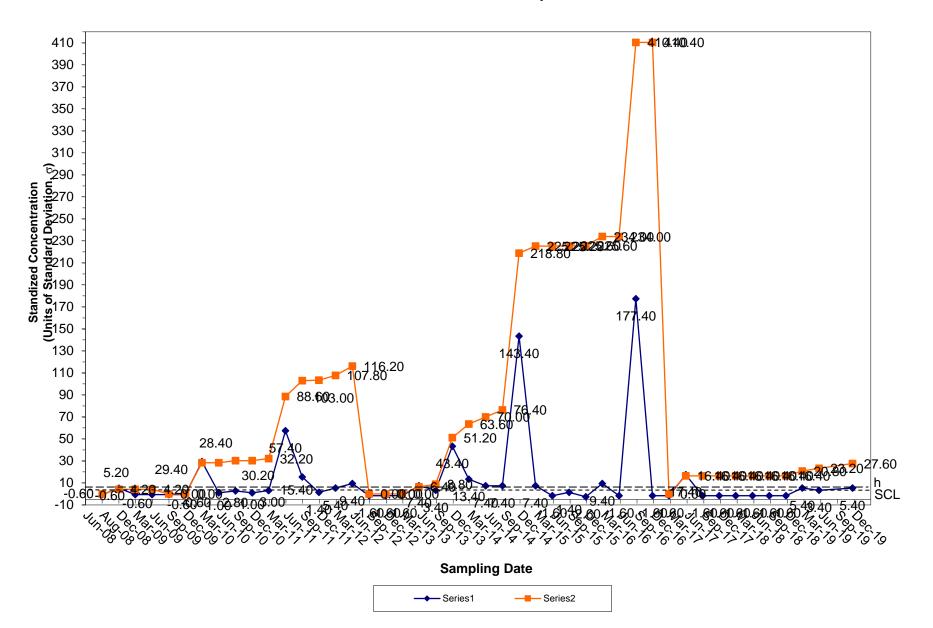


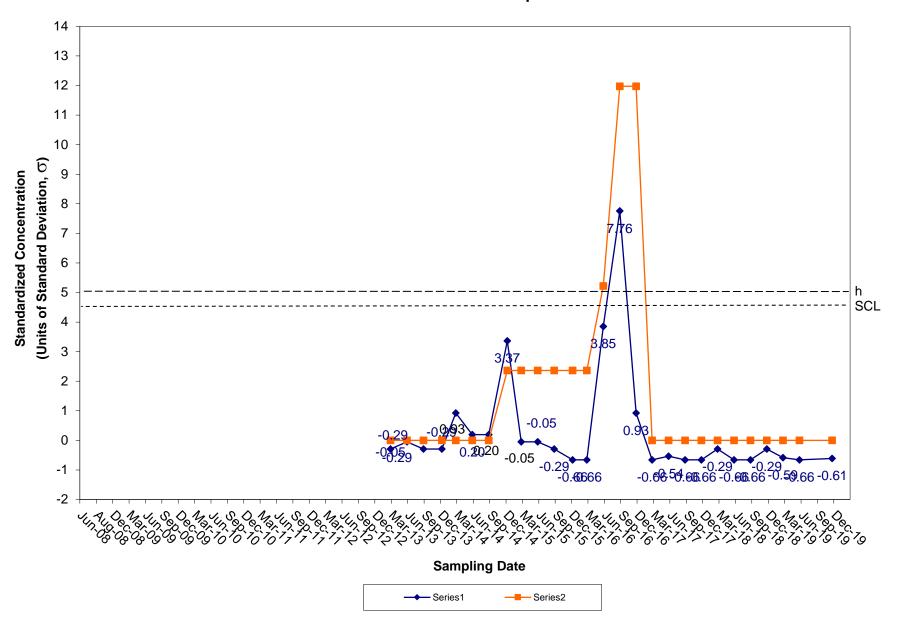

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-12

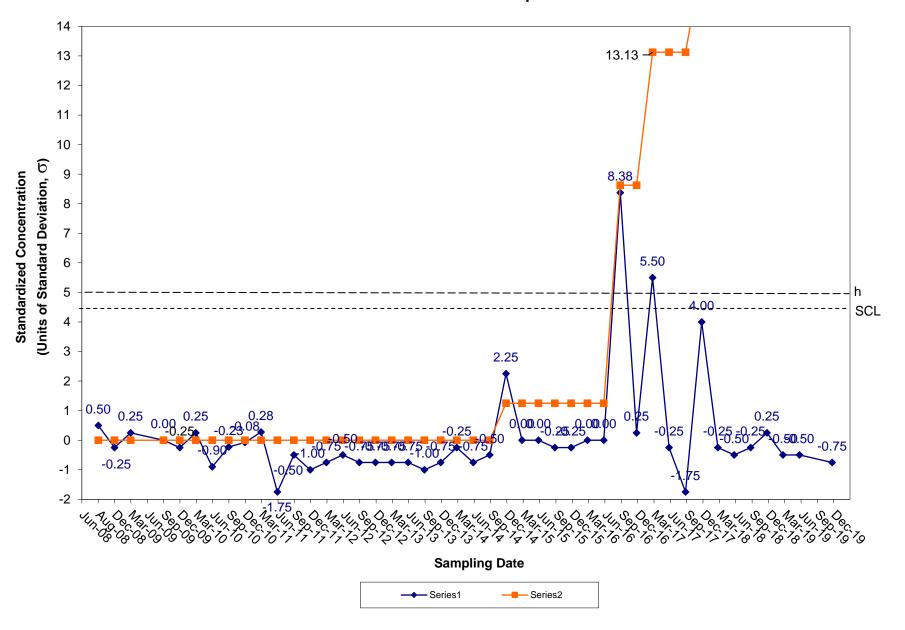

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-13

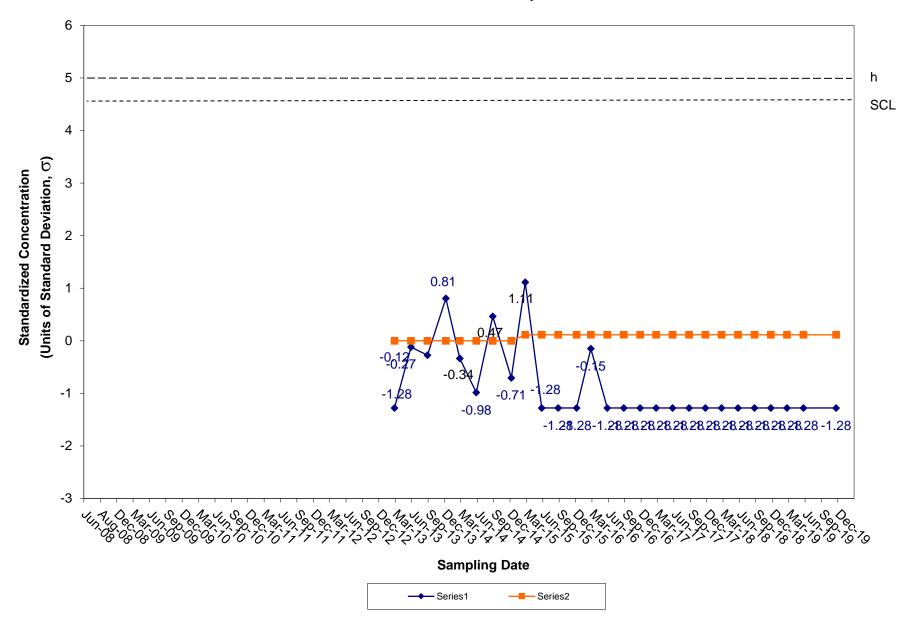

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-13

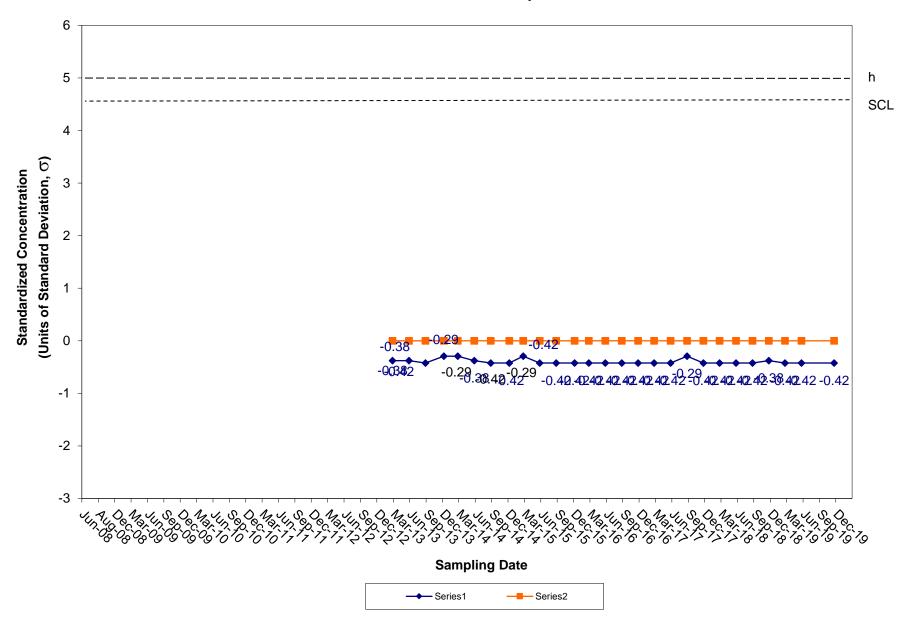

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-13

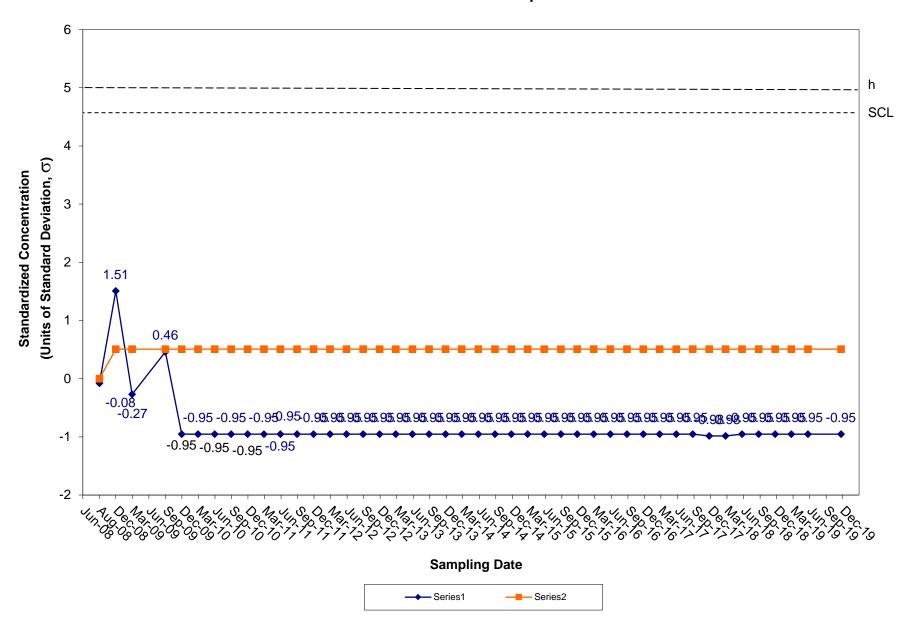

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Complaince Well OW-13

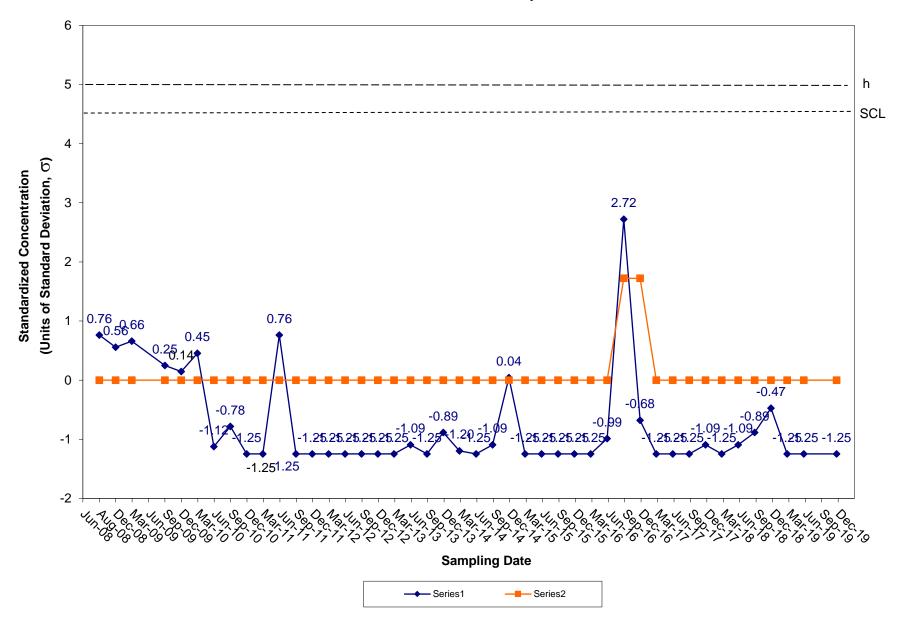

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-13

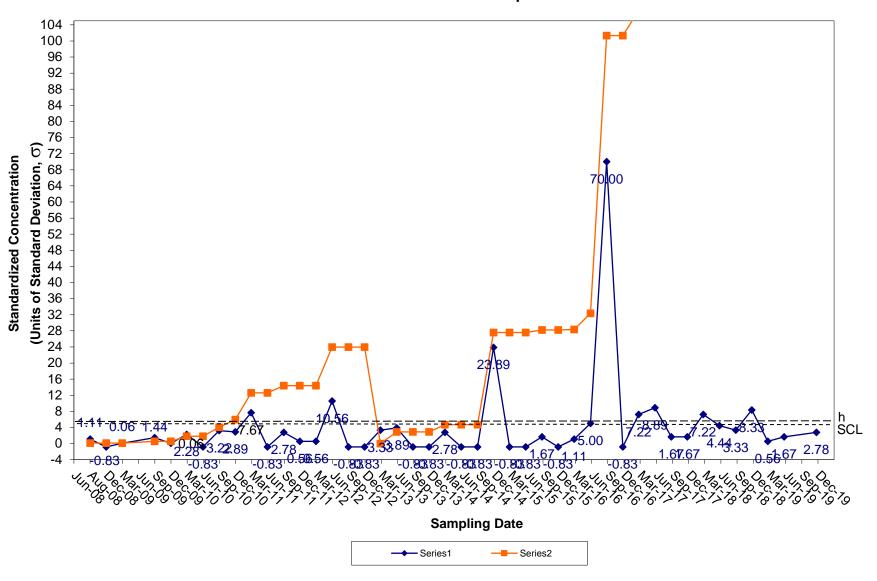

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-13

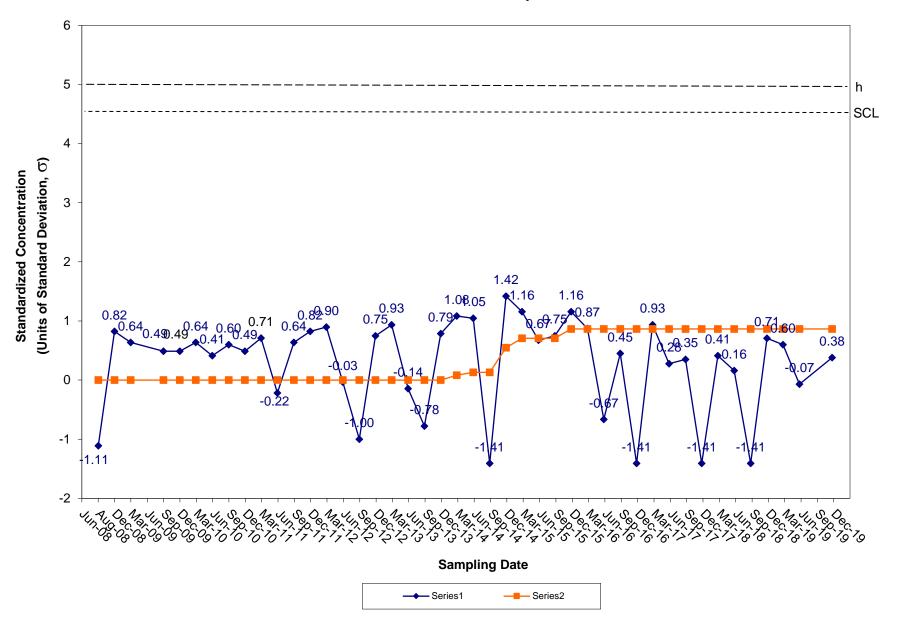

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-13

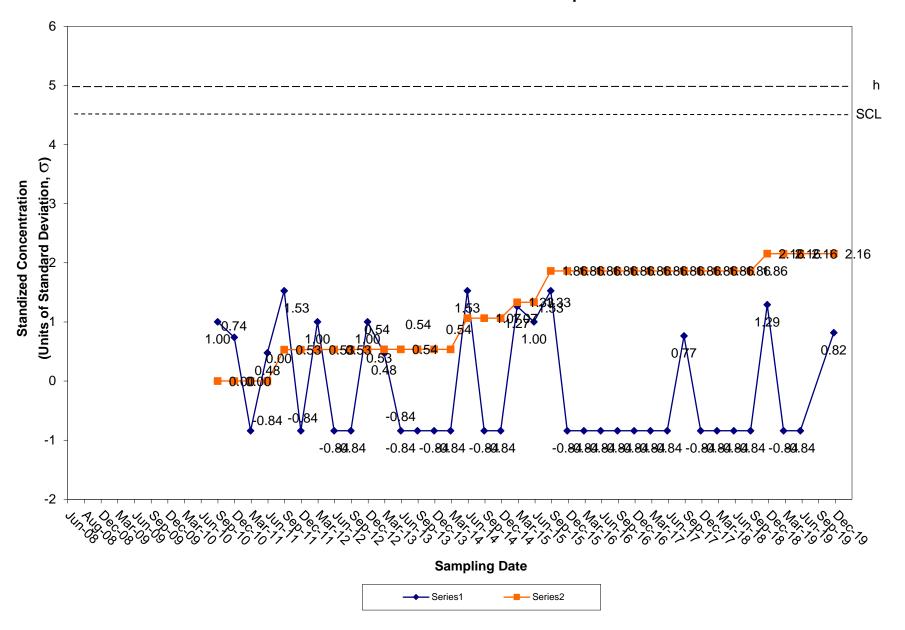

CUSUM Control Chart for Selenium Tiverton Landfill Groundwater Compliance Well OW-13

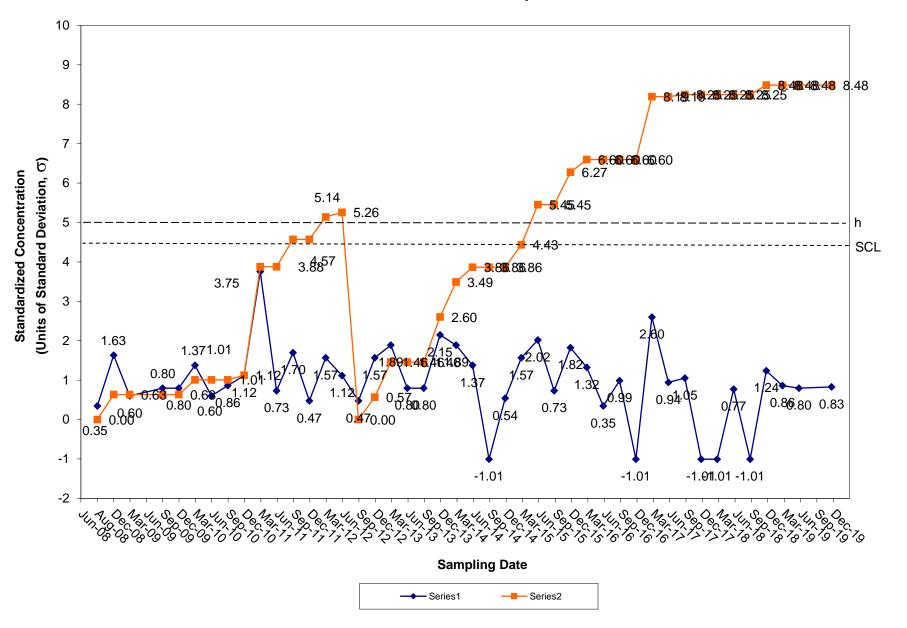

CUSUM Control Chart for Silver Tiverton Landfill Groundwater Compliance Well OW-13

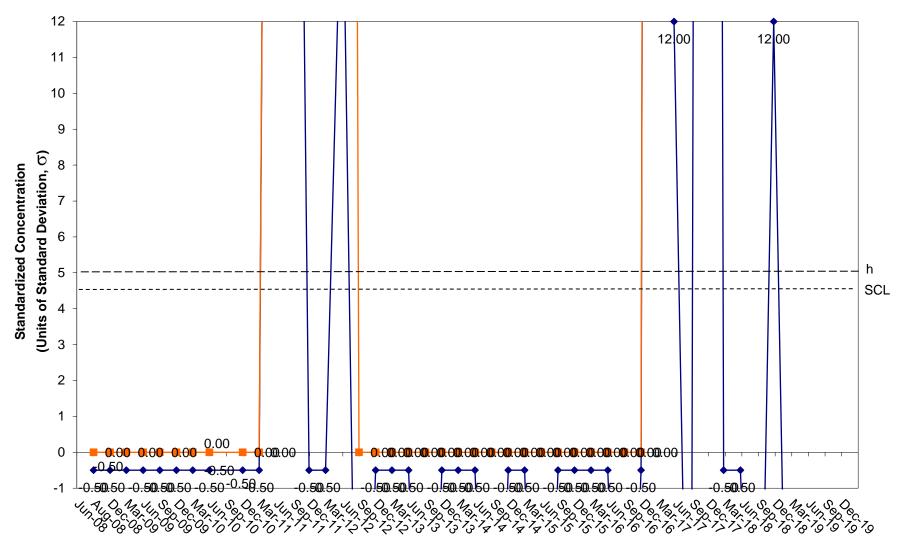

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-13

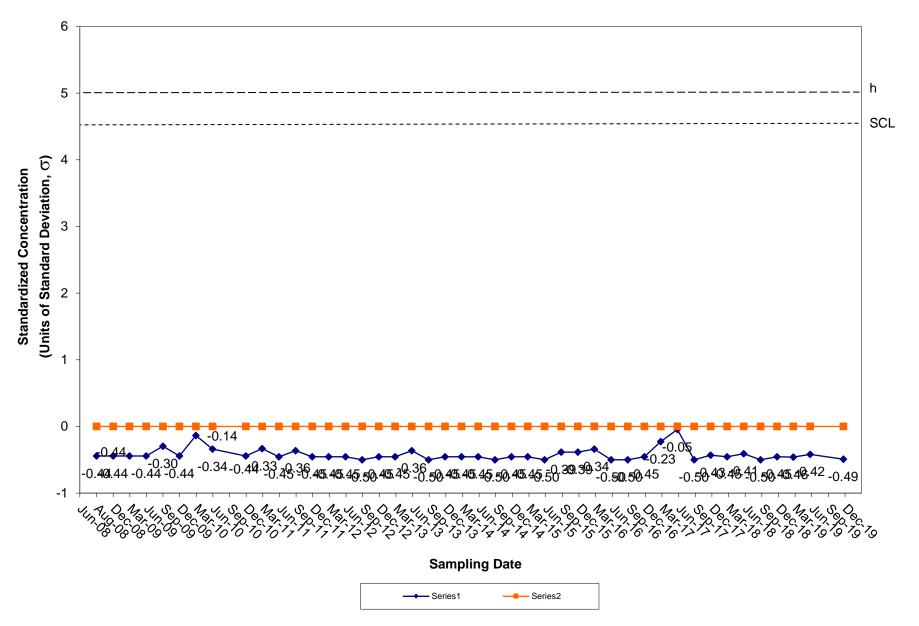
CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-13

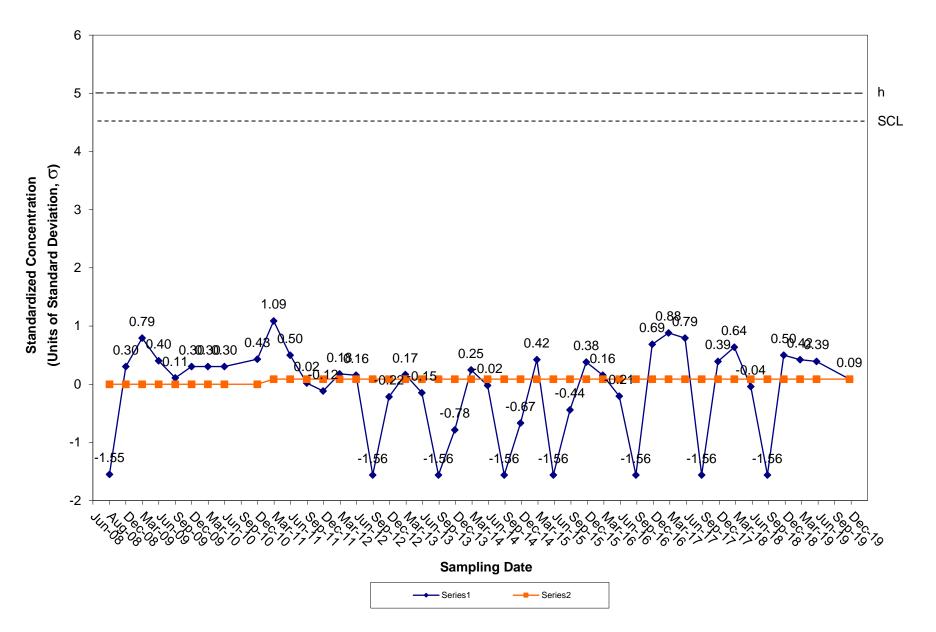

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-13

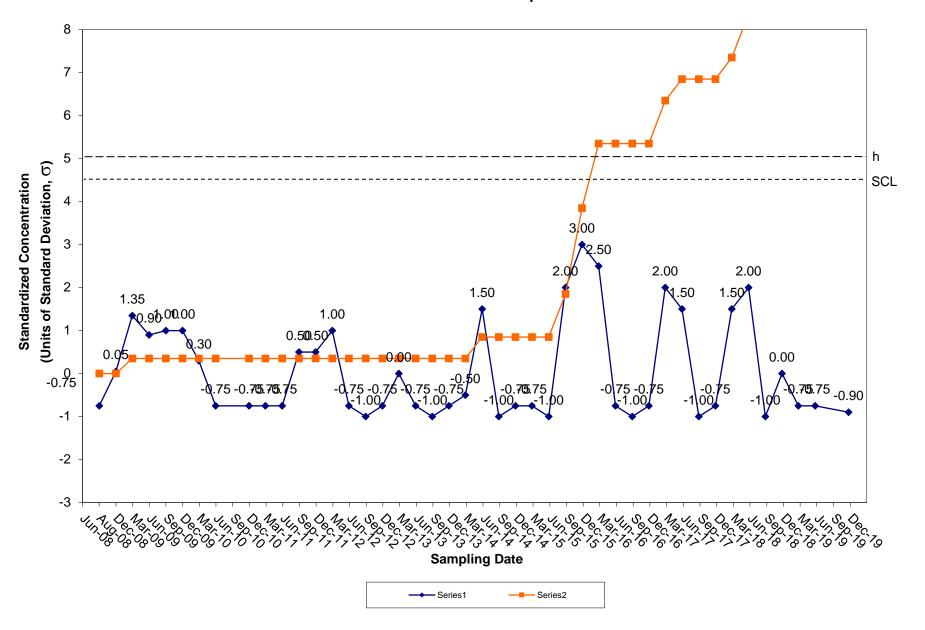

CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-13

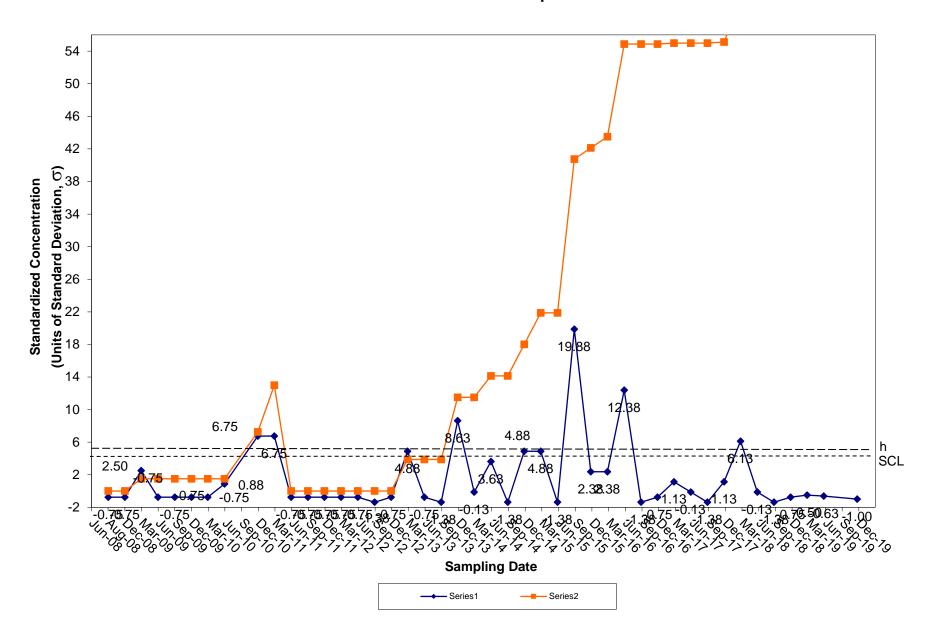

CUSUM Control Chart for 1,4-Dichlorobenzene - Adjusted Baseline Tiverton Landfill Groundwater Complaince Well OW-13

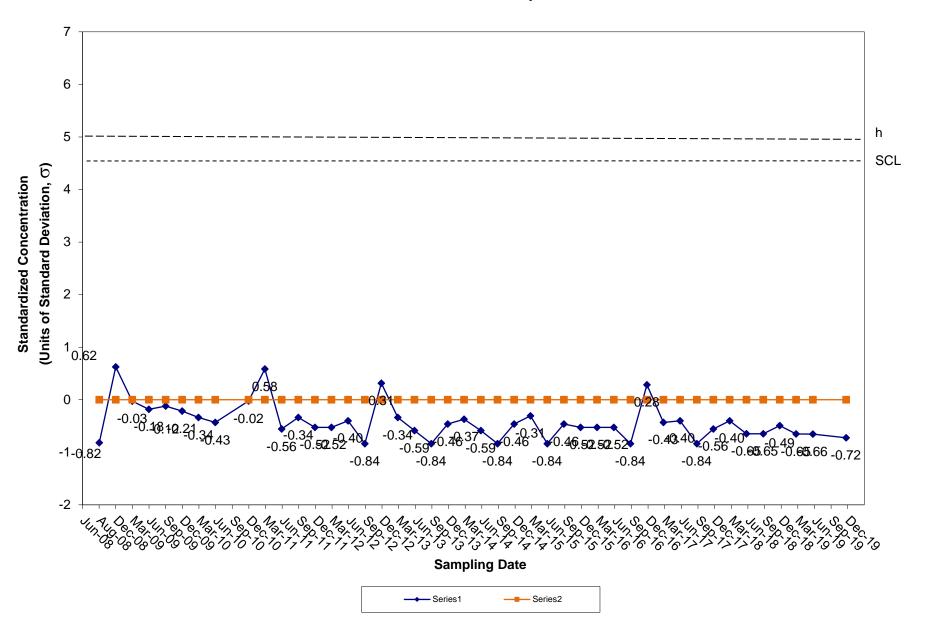
CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-13

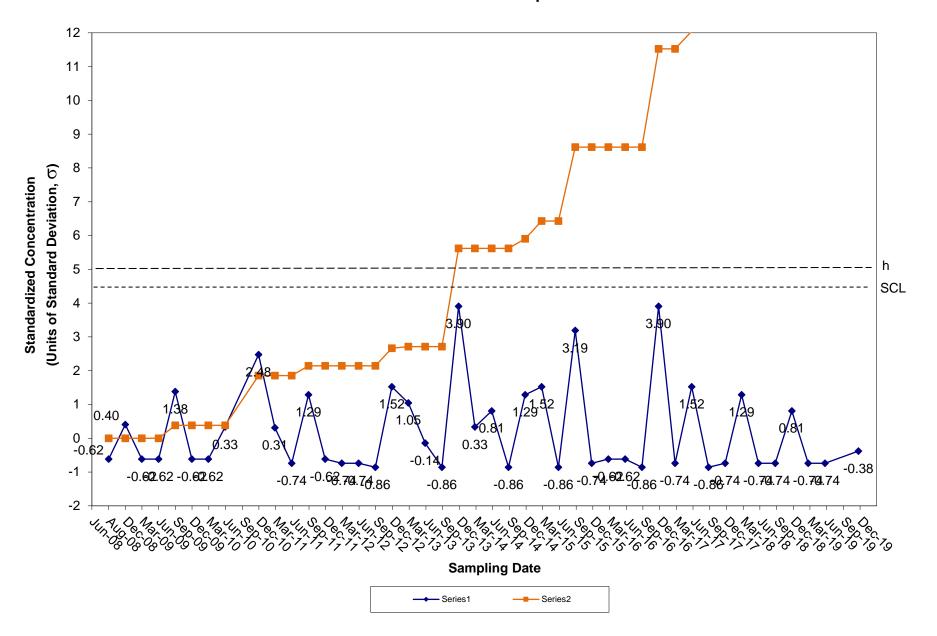

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-14

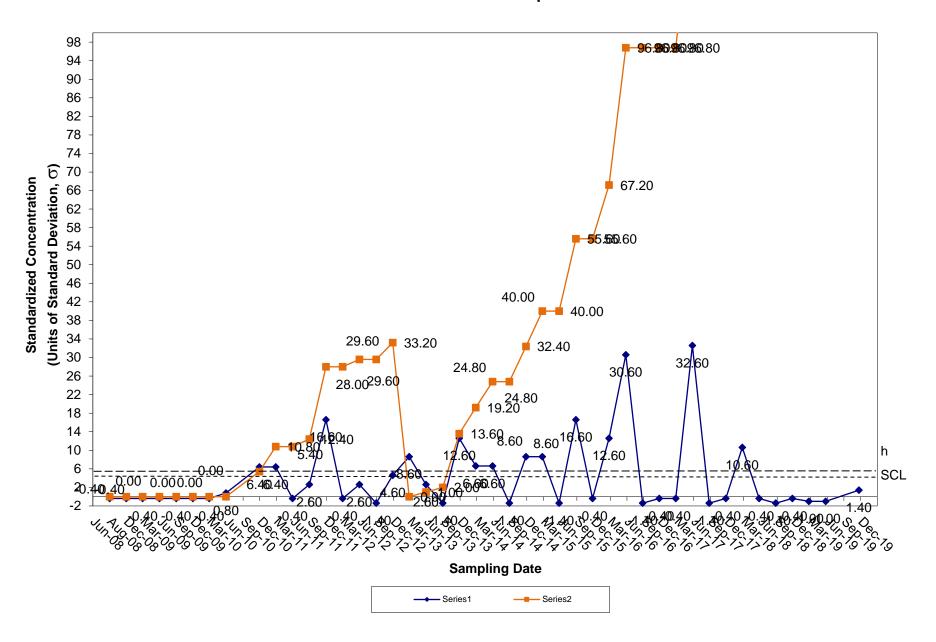

Sampling Date

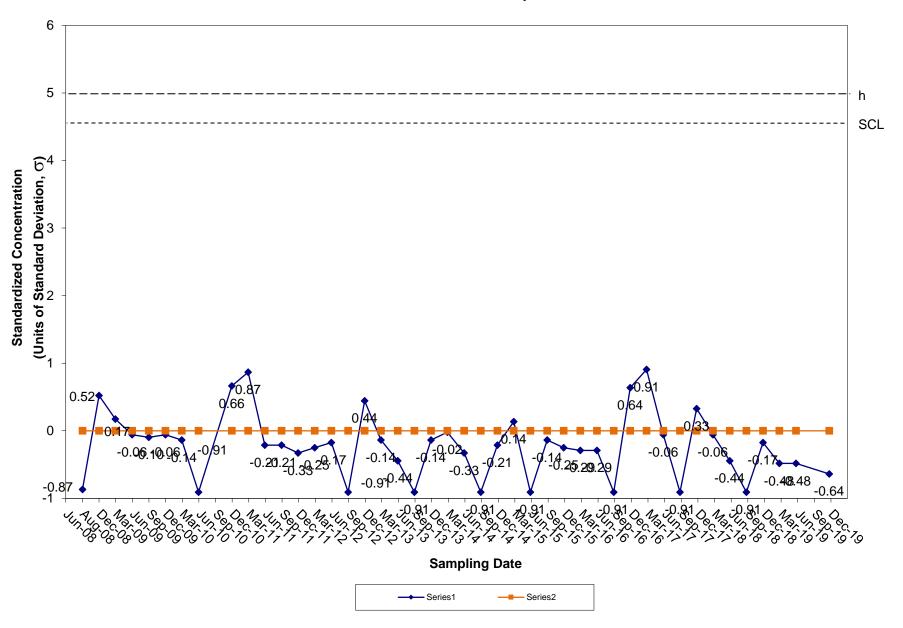

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-14

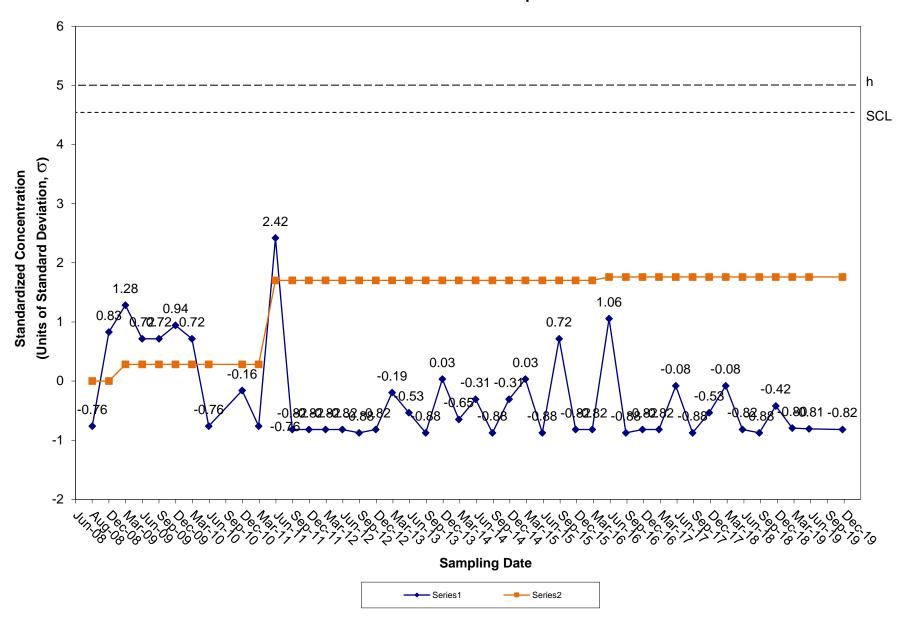

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-14

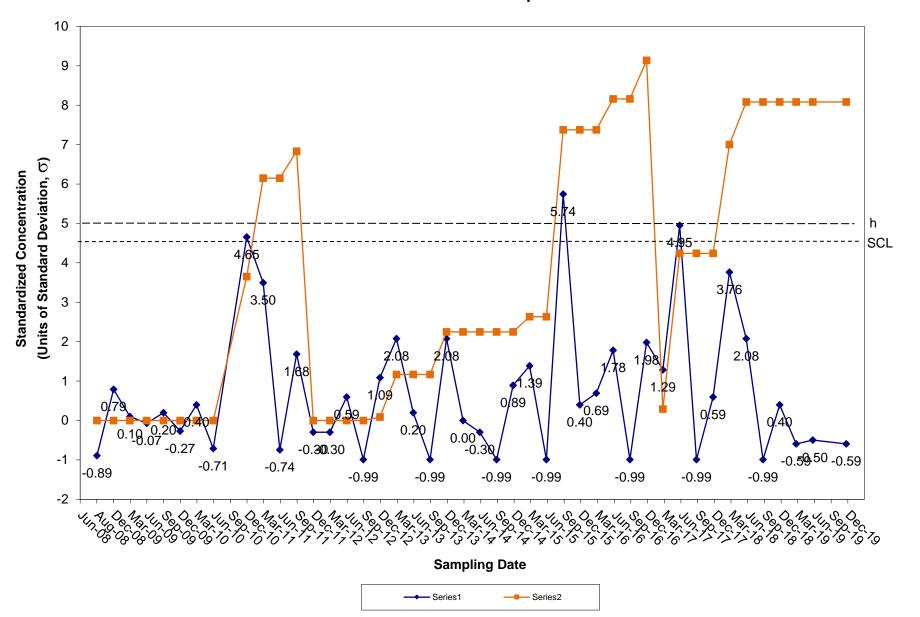

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-14

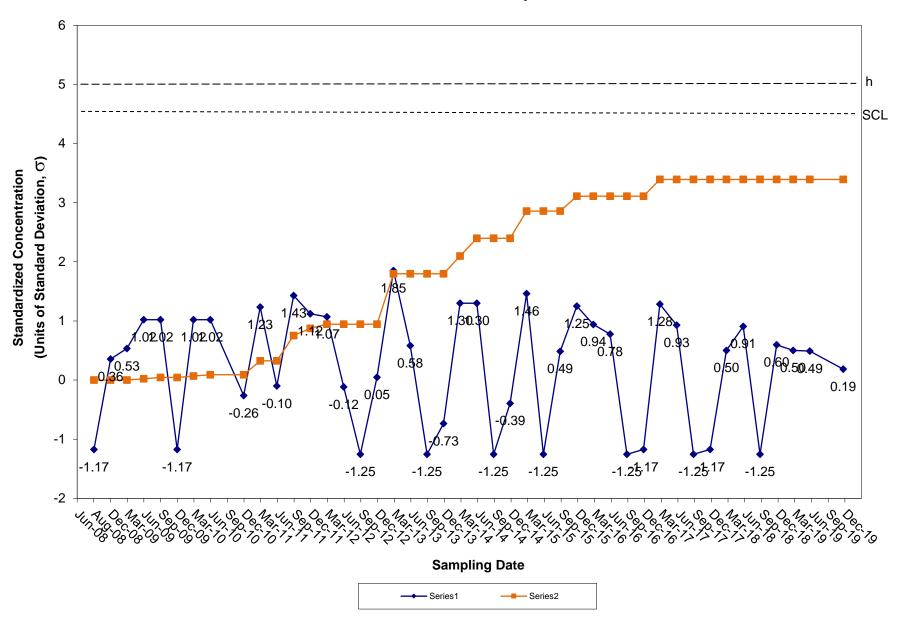

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-14

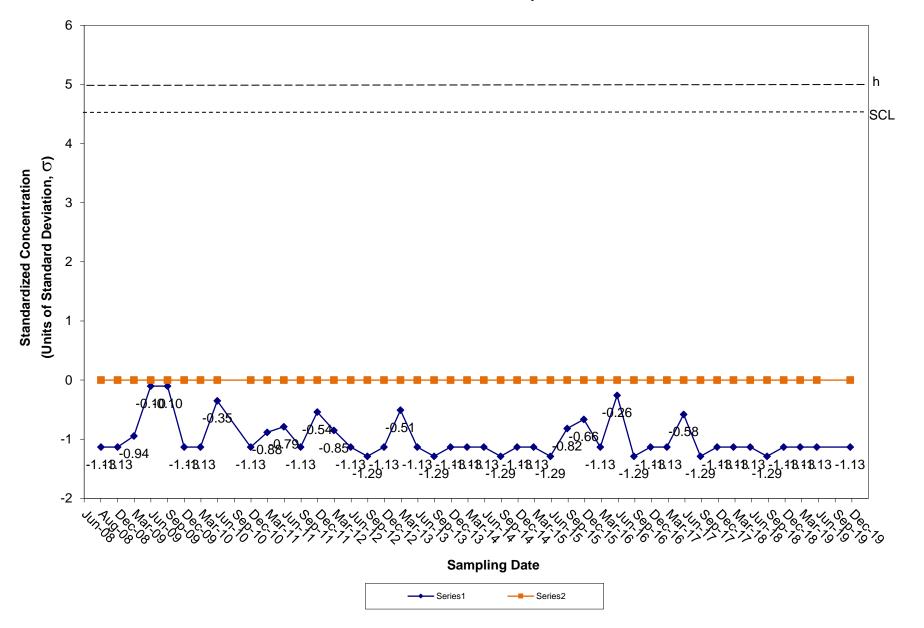

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-14

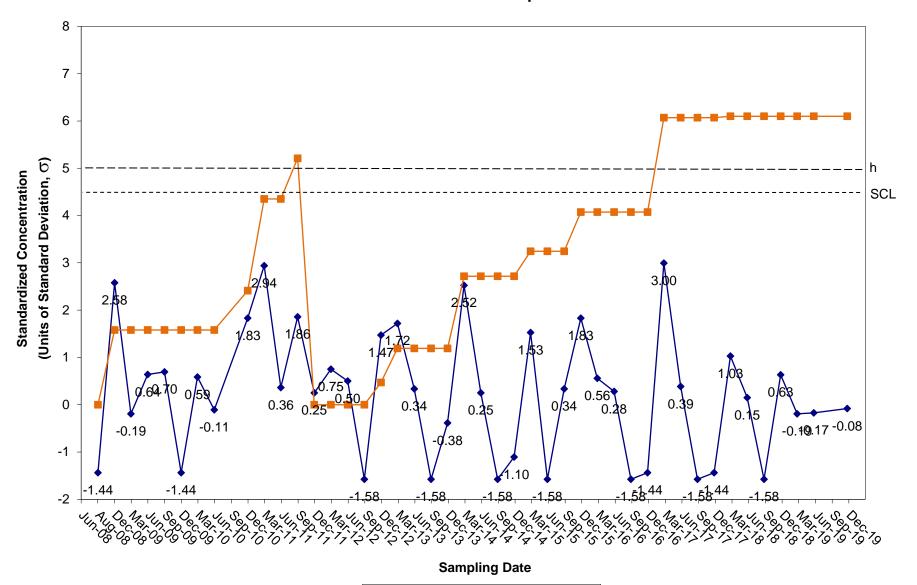

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-14

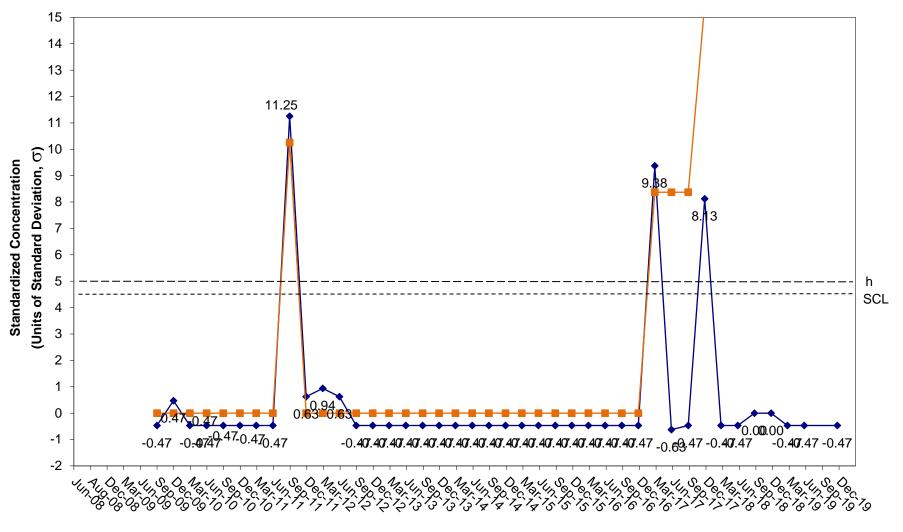

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-14

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

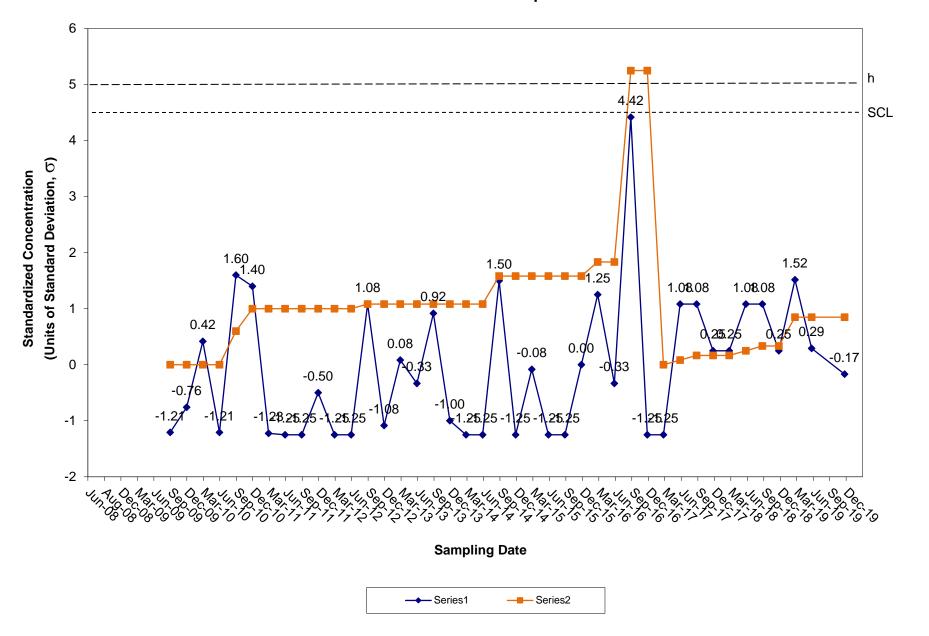

CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-14

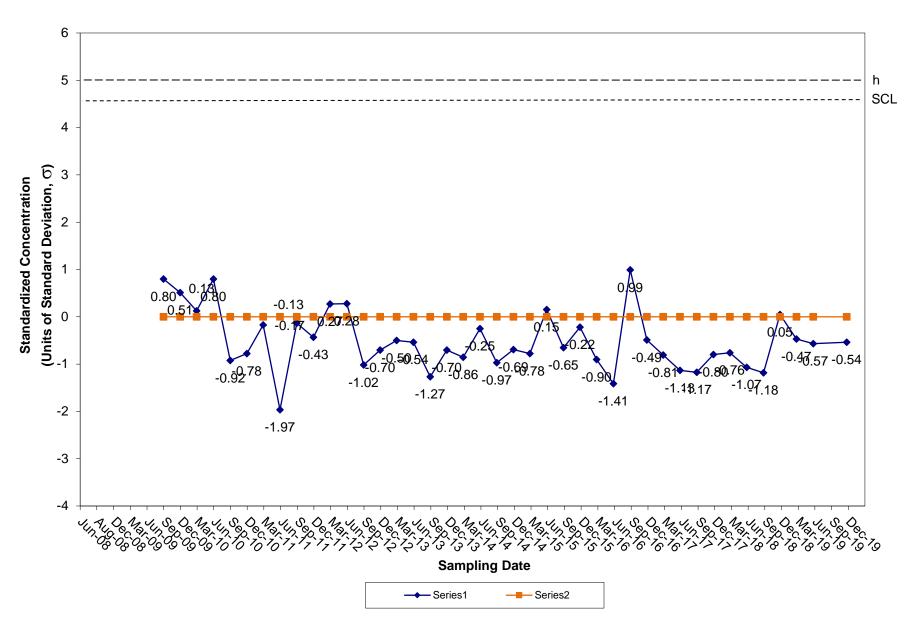
CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

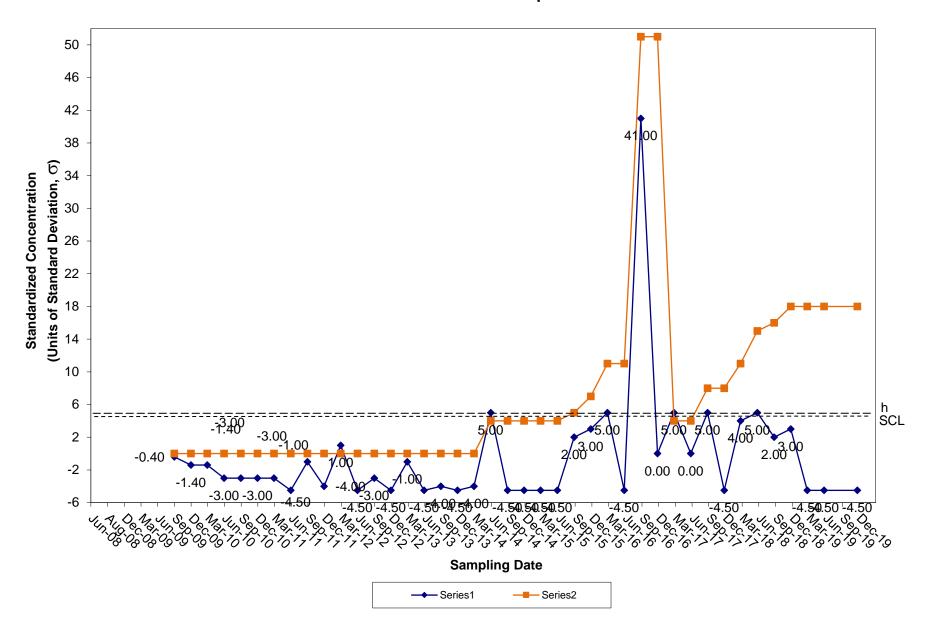

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-14

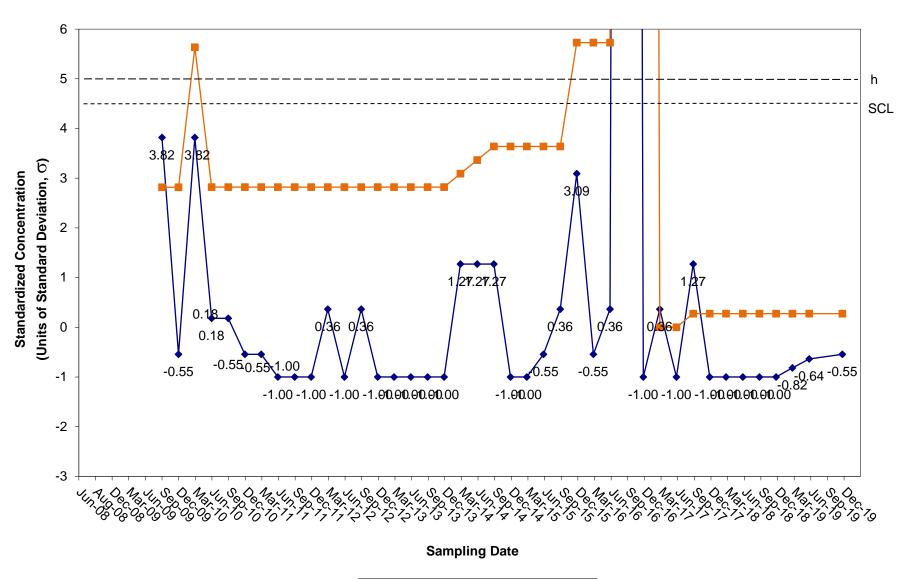
- Series1

Series2

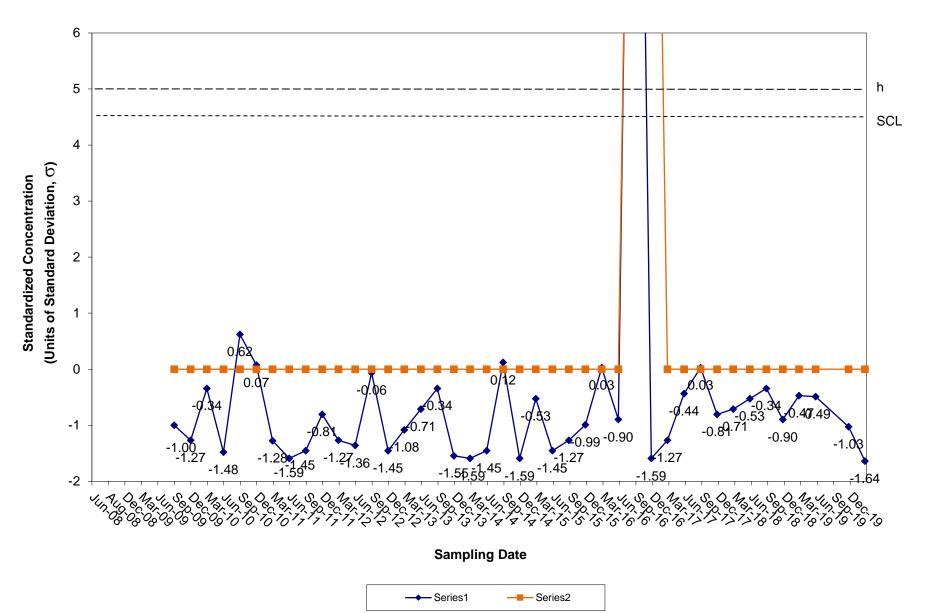

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-15


Sampling Date

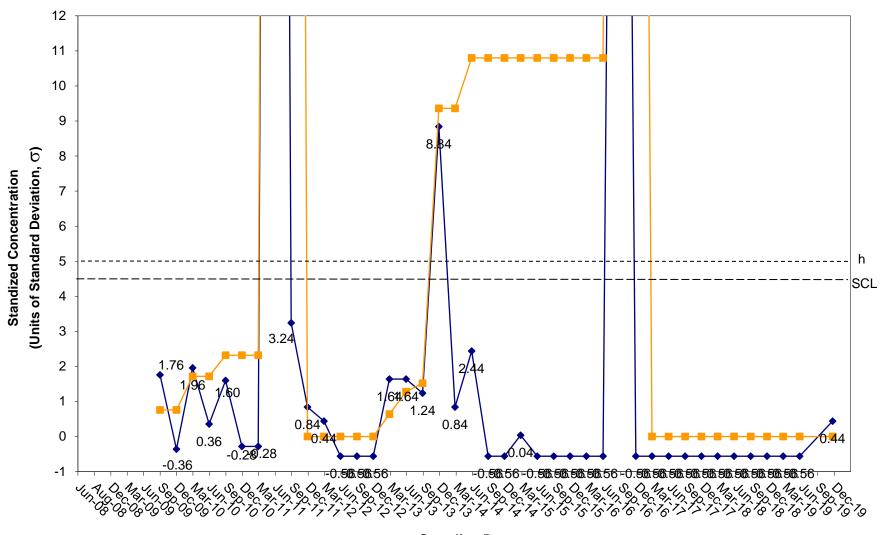

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-15

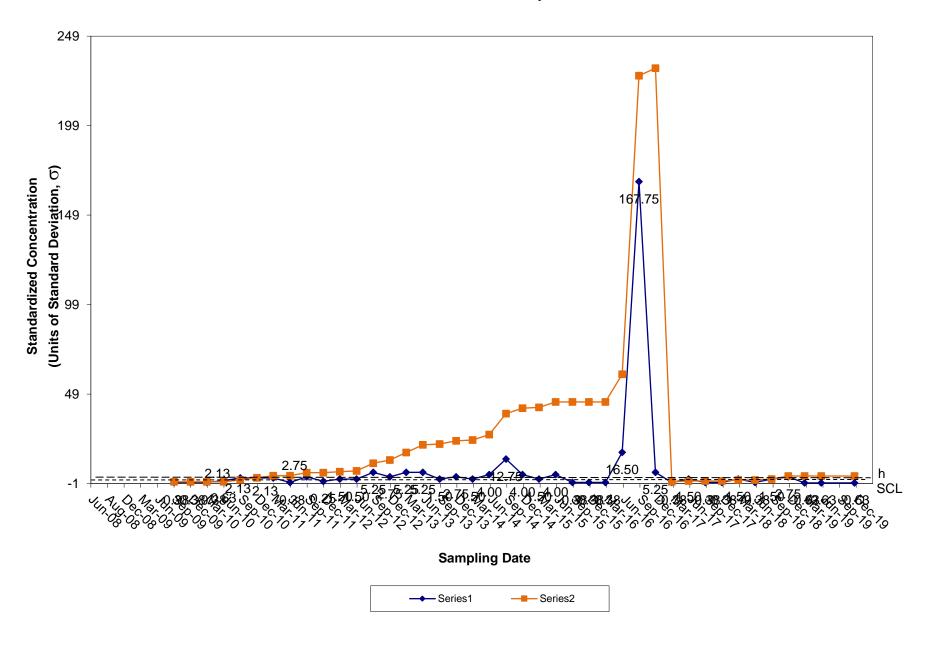
CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-15

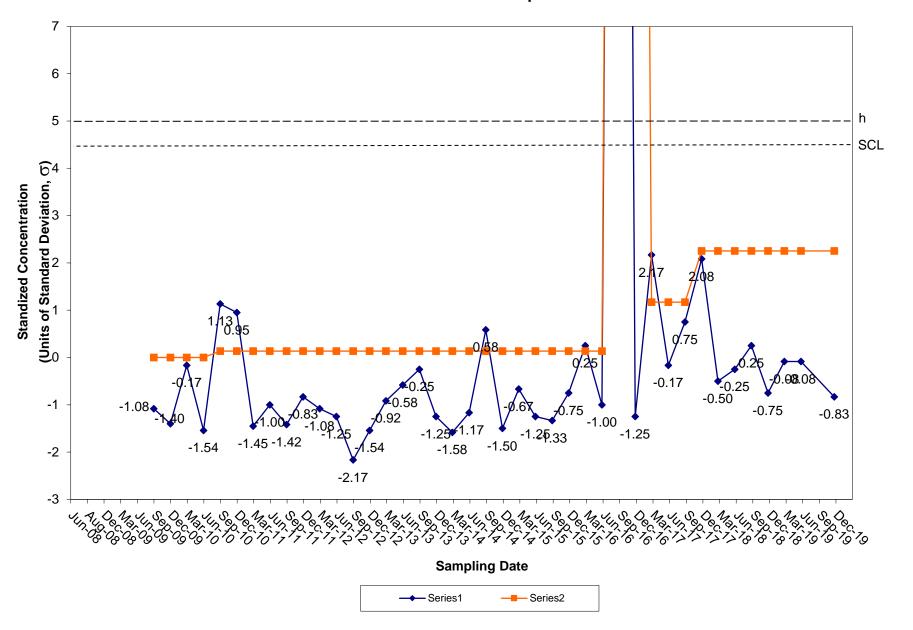


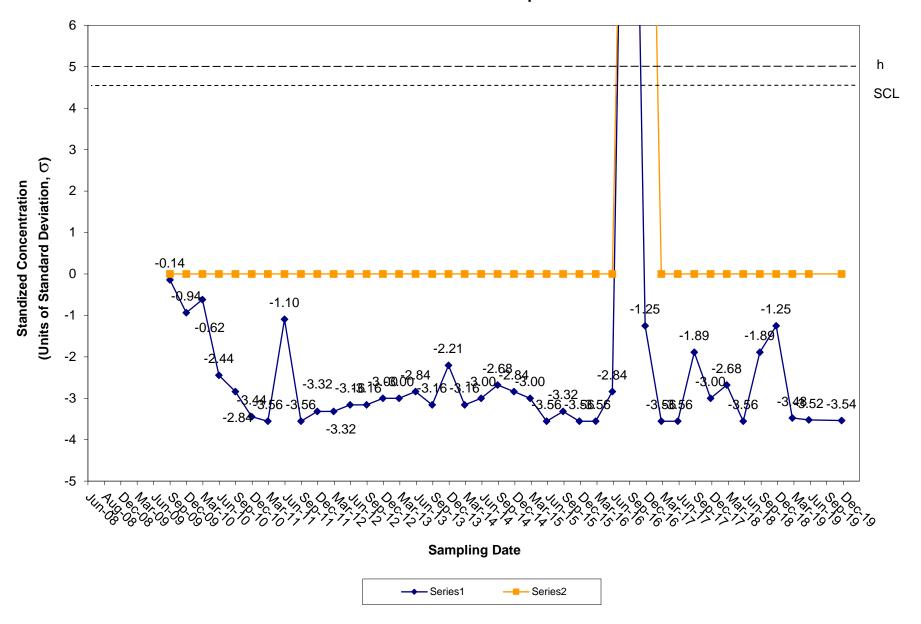
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-15

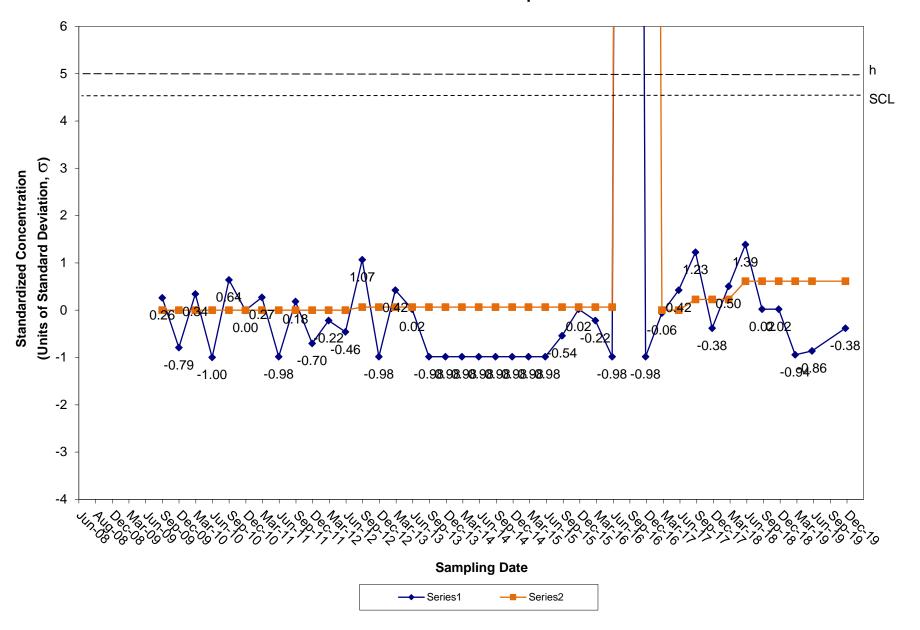


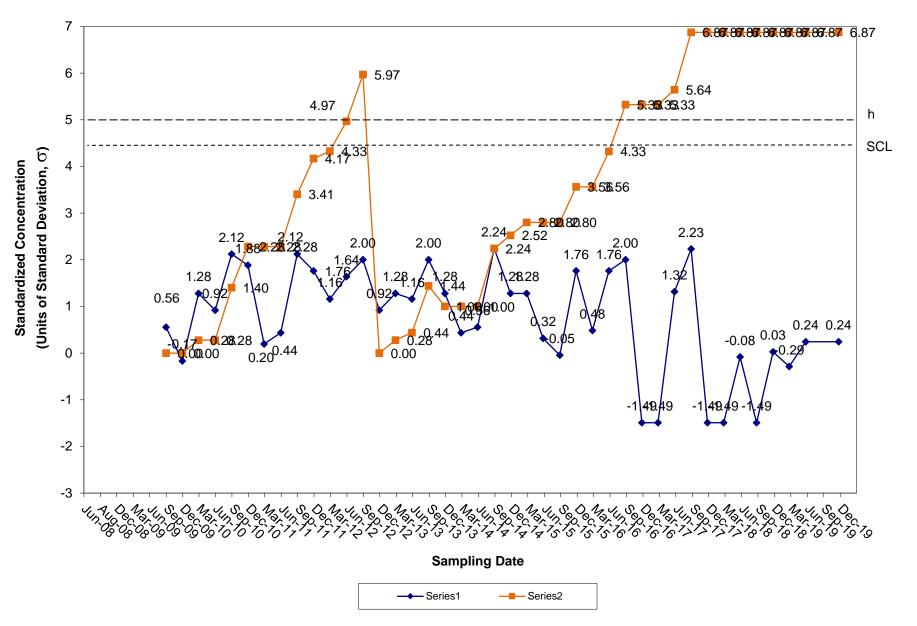
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-15

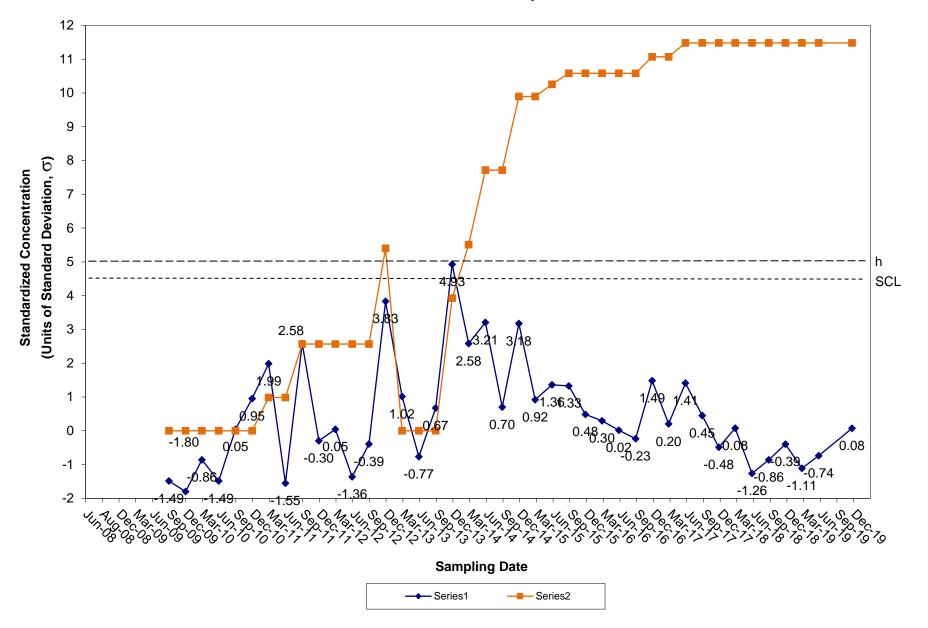

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-15

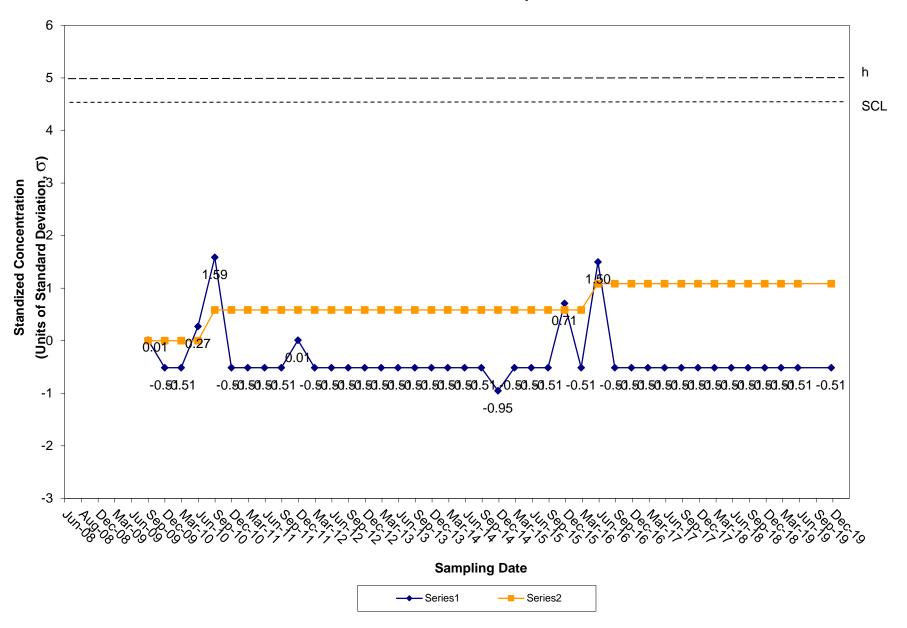

Sampling Date

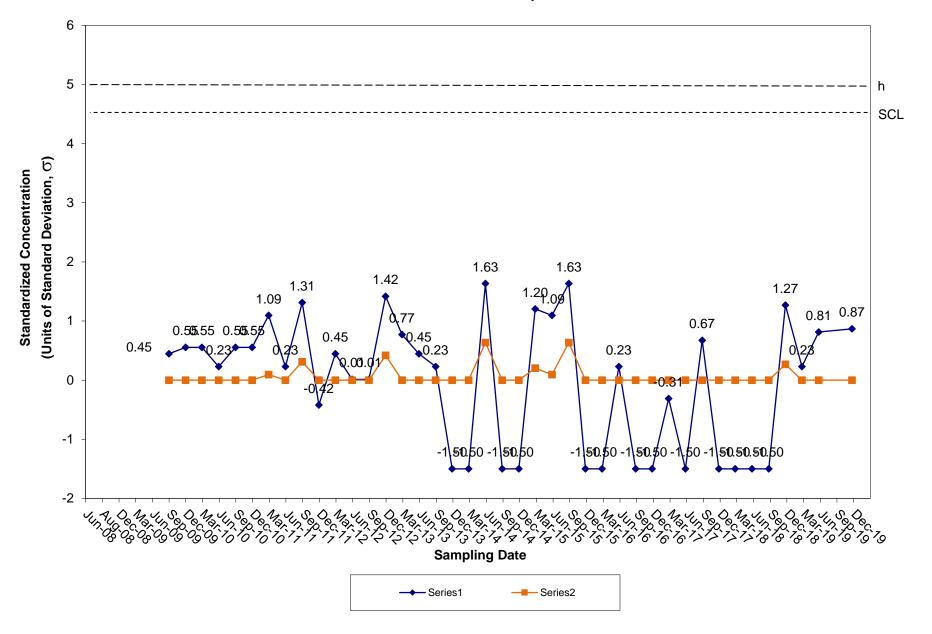

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-15

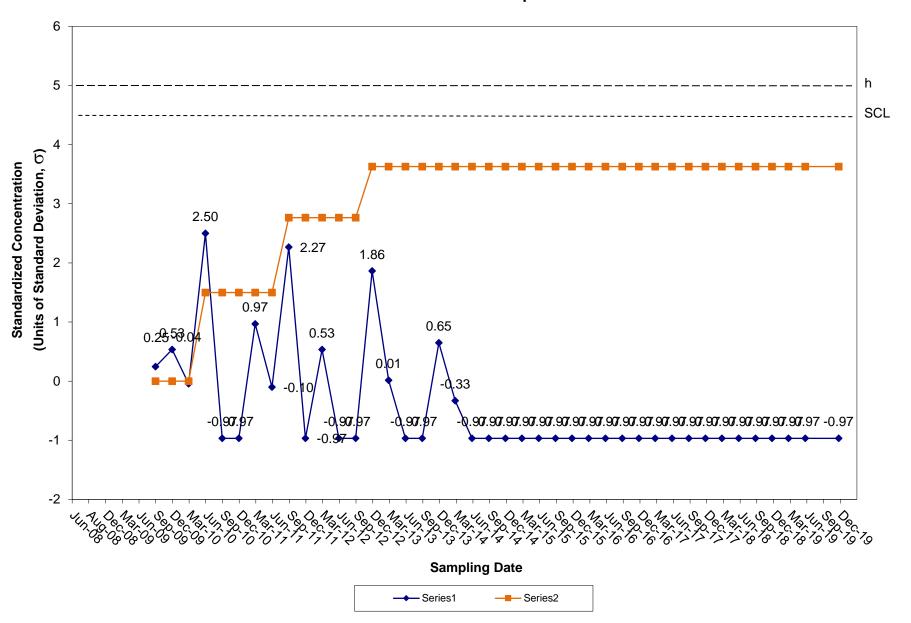

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Complaince Well OW-15


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Complaince Well OW-15


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Complaince Well OW-15

CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15

CUSUM Control Chart for Xylenes Tiverton Landfill Groundwater Compliance Well OW-15

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-15

APPENDIX I

Tolerance Limit Calculation

PROJECT TIVESTON	LANDFILL ,	PROJECT NO. 94139, 01
SUBJECT TOLEPANCE	INTER! AL	CALCULATION
COMPUTATIONS BY		DATE 01-22-64
снеск ву		DATE

OBDECTIVE:

PROVIDE SAMPLE CALCULATION FOR STATISTICAL ANALYSIS OF TIVERTON LANDFILL GROUNDWATER MONITORING DATA VIA TOLERANCE LIMIT APPROACH

GWEN;

DATA SET SIZE IS 8 (N=8).

POPULATION OF DATA WE WILL PROVIDE FOR 15 95%. (P= 0.95)

PERCENT CONFIDENCE WE WILL CALLULATE 13 95%. (y = 0.95)

CALCULATION:

CALCULATE UPPER TOLERANCE LIMIT

Yu = UPPER TOLEPANCE LIMIT
Y = MEAN VALUE OF DATA SE

= MEAN VALUE OF DATH SET

K = K FACTOR FOR ONE SIDES THEFAME

LIMIT

STANDARD DEVIATION OF DATA SET

CALCULATE K FACTOR

$$K_1 = \frac{\mathbb{E}(1-p) \div \sqrt{\mathbb{E}_{Lip}^2 - ab}}{a}$$

= (1-P) = 1.645 (REFER TO SECTION 1.3.6.7.1 - ATTACHED)

$$a = 1 - \frac{z(1-y)}{z(N-1)}$$

$$b = z_{(1-p)}^2 - z_{(1-y)}^2$$

= (1-Y) = 1.645 (REFER TO SECTION 1.3.6,7.1 - ATTACHED)

PROJECT TIVERTON LA	WFILL PROJEC	T NO. 94139, 01
SUBJECT TOLERANCE	INTERVAL	CALCULATION
COMPUTATIONS BY	TPT ·	DATE 01-22-04
CHECK BY		DATE

CALCULA TONS!

CALCULATE a

$$a = 1 - \frac{z^{2}(1-y)}{z(N-1)}$$

$$= 1 - \frac{(1.645)^{2}}{z(8-1)}$$

= 0,807

CALCULATE 6

$$D = \Xi_{(1-p)}^{2} - \underline{\Xi_{(1-y)}^{2}}$$

$$= (1.645)^{2} - \underline{(1.645)^{2}}$$

= 2,368

CALCULATE K,

$$K_{1} = \frac{2}{(1-p)} + \sqrt{\frac{2}{(1-p)} - ab}$$

$$= \frac{1.645 + \sqrt{1.645^{2} - (0.807)(2.368)}}{0.807}$$

= 3.143

UPPER TOLERANCE LIMIT IS

$$Y_{u} = \overline{Y} + 3.143(s)$$

CALCULATE UPPER TOLERANCE LIMIT FOR BINC DETECTED IN OW-9 FOR THE LAST 8 SAMPLING ROUNDS FOR WHICH DATA WAS COLLECTED.

PROJECT TWERTON L	ANDFILL PROJECT NO	1. 94139.01
SUBJECT TOLERANCE	Tルで高フJAL	CA -1-1-47 11)
COMPUTATIONS BY	PT	PO-22-10 STAG
CHECK BY		DATE

CALCULATIONS:

(cont ...)

Y = 0.0571 (REFER TO ATTACHED EXCEL SHEET) S = 0.0628 (REFER TO ATTACHED EXCEL SHEET)

Yu = 0.0571 + 3.143 (0.0628)

= 0.254

FROM OW-9 WILL HAVE A
CONCENTRATION OF EINC BELOW
0.254 Ma/L WITH A 95% CERTAINTY

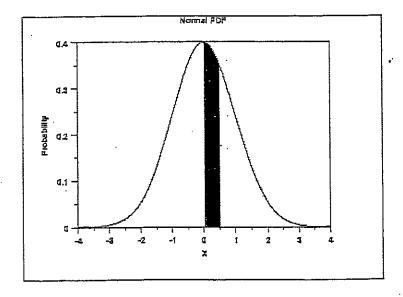
1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution


How to Use This Table

The table below contains the area under the standard normal curve from 0 to z. This can be used to compute the <u>cumulative distribution function</u> values for the <u>standard normal</u> distribution.

The table utilizes the symmetry of the normal distribution, so what in fact is given is

$$P[0 \le x \le |a|]$$

where a is the value of interest. This is demonstrated in the graph below for a = 0.5. The shaded area of the curve represents the probability that x is between 0 and a.

This can be clarified by a few simple examples.

1. What is the probability that x is less than or equal to 1.53? Look for 1.5 in the X column, go right to the 0.03 column to find the value 0.43699. Now add 0.5 (for the

probability less than zero) to obtain the final result of 0.93699.

2. What is the probability that x is less than or equal to - 1.53? For negative values, use the relationship

$$P[x \le a] = 1 - P[x \le |a|] \quad \text{ for } x < 0$$

From the first example, this gives 1 - 0.93699 = 0.06301.

3. What is the probability that x is between -1 and 0.5? Look up the values for 0.5 (0.5 + 0.19146 = 0.69146) and -1 (1 - (0.5 + 0.34134) = 0.15866). Then subtract the results (0.69146 - 0.15866) to obtain the result 0.5328.

To use this table with a non-standard normal distribution (either the location parameter is not 0 or the scale parameter is not 1), standardize your value by subtracting the mean and dividing the result by the standard deviation. Then look up the value for this standardized value.

A few particularly important numbers derived from the table below, specifically numbers that are commonly used in significance tests, are summarized in the following table:

Р	0.001	0.005	0.010	0.025	0.050	0.100
Z_{p}	-3.090	-2.576	-2.326	-1.960	-1.645	-1.282

p	0.999	0.995	0.990	0.975	0.950	0.900
$Z_{\rm p}$	+3.090	+2.576	+2.326	+1.960	+1.645	+1.282

These are critical values for the normal distribution.

Area under the Normal Curve from 0 to X

x .	0.00	0.01	0.'02	0.03	0.04	0.05	0.06	0.07	80.0	0.
0.0	0.0000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	ο.
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	Ο.
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0,
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0,
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	Ο.
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	٥.
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.
0.8	0.28814	0.29103	0,29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	٥.

```
0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.
0.9
       0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.
1.0
       0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.
       0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.
       0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41308 0.41466 0.41621 0.
1.3
       0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.
1.4
       0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.
1.5
        0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.
1.6
        0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.
1.7
       0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.
1.8
        0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.
1.9
       0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.
2.0
       0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.
2.1
       0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.
2.2
       0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.
2.3
       0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.
2.4
       0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.
2.5
      0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.
2.6
       0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.
2.7
       0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.
2.8
       0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.
2.9
        0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.
3.0
       0.49903 0.49906 0.49910 0.49913 0.49916 0.49918 0.49921 0.49924 0.49926 0.
3.1
       0.49931 0.49934 0.49936 0.49938 0.49940 0.49942 0.49944 0.49946 0.49948 0.
3.2
       0.49952 0.49953 0.49955 0.49957 0.49958 0.49960 0.49961 0.49962 0.49964 0.
3.3
        0.49966 0.49968 0.49969 0.49970 0.49971 0.49972 0.49973 0.49974 0.49975 0.
3.4
        0.49977 0.49978 0.49978 0.49979 0.49980 0.49981 0.49981 0.49982 0.49983 0.
3.5
        0.49984 0.49985 0.49985 0.49986 0.49986 0.49987 0.49988 0.49988 0.
3.6
        0.49989 0.49990 0.49990 0.49990 0.49991 0.49991 0.49992 0.49992 0.49992 0.
3,7
       0.49993 0.49993 0.49993 0.49994 0.49994 0.49994 0.49995 0.49995 0.
3.8
       0.49995 0.49995 0.49996 0.49996 0.49996 0.49996 0.49996 0.49997 0.
3.9
        0.49997 0.49997 0.49997 0.49997 0.49997 0.49998 0.49998 0.49998 0.
4.0
```

NIST SEMATECH

HOME

TOOLS & AIDS

SEARCH

BACK NEXT

7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.3. Tolerance intervals for a normal distribution

Definition of a tolerance interval

A confidence interval covers a population parameter with a stated confidence, that is, a certain proportion of the time. There is also a way to cover a fixed proportion of the population with a stated confidence. Such an interval is called a tolerance interval. The endpoints of a tolerance interval are called tolerance limits. An application of tolerance intervals to manufacturing involves comparing specification limits prescribed by the client with tolerance limits that cover a specified proportion of the population.

Difference between confidence and tolerance intervals

Confidence limits are limits within which we expect a given population parameter, such as the mean, to lie. Statistical tolerance limits are limits within which we expect a stated proportion of the population to lie. Confidence intervals shrink towards zero as the sample size increases. Tolerance intervals tend towards a fixed value as the sample size increases.

Not related to engineering tolerances

Statistical tolerance intervals have a probabilistic interpretation. Engineering tolerances are specified outer limits of acceptability which are usually prescribed by a design engineer and do not necessarily reflect a characteristic of the actual measurements.

Three types of tolerance intervals

Three types of questions can be addressed by tolerance intervals. Ouestion (1) leads to a two-sided interval; questions (2) and (3) lead to one-sided intervals.

- 1. What interval will contain p percent of the population measurements?
- 2. What interval guarantees that p percent of population measurements will not fall below a lower limit?
- What interval guarantees that p percent of population measurements will not exceed an upper limit?

Tolerance intervals for measurements from a normal distribution

For the questions above, the corresponding tolerance intervals are defined by lower (L) and upper (U) tolerance limits which are computed from a series of measurements $Y_1, ..., Y_N$:

1.
$$Y_L = \bar{Y} - k_2 s$$
; $Y_{\bar{U}} = \bar{Y} + k_2 s$

$$2. \ Y_L = \bar{Y} - k_1 s$$

3.
$$Y_{U} = \bar{Y} + k_{1}s$$
 3. $Y_{U} = \bar{Y} + k_{1}s$ 3. $Y_{U} = \bar{Y} + k_{1}s$ 3. $Y_{U} = \bar{Y} + k_{1}s$ 40. $y_{1} = \bar{y} + k_{1}s$ 40. $y_{2} = \bar{y} + k_{1}s$ 40. $y_{3} = \bar{y} + k_{1}s$ 40. $y_{4} = \bar{y} + k_{1}s$

where the k factors are determined so that the intervals cover at least a proportion p of the population with confidence, γ .

Calculation of k factor for a two-sided tolerance limit for a normal distribution

If the data are from a normally distributed population, an approximate value for the factor as a function of p and y for a two-sided tolerance interval (Howe, 1969) is

$$k_2 = \sqrt{\frac{(N-1)\left(1+\frac{1}{N}\right)Z_{(1-N)/2}^2}{\chi_{\gamma,N-1}^2}}$$

where $x_{j',N-1}$ is the critical value of the chi-square distribution with degrees of freedom, N-1, that is exceeded with probability y and $x_{(1-p)/2}$ is the critical value of the normal distribution which is exceeded with probability (1-p)/2.

Example of calculation

For example, suppose that we take a sample of N = 43 silicon wafers from a lot and measure their thicknesses in order to find tolerance limits within which a proportion p = 0.90 of the wafers in the lot fall with probability y = 0.99.

Use of tables in calculating two-sided tolerance intervals

Values of the k factor as a function of p and y are tabulated in some textbooks, such as Dixon and Massey (1969). To use the tables in this handbook, follow the steps outlined below:

- 1. Calculate $\alpha = (1 p)/2 = 0.05$
- 2. Go to the table of upper critical values of the normal distribution and under the column labeled 0.05 find $\sqrt[2]{1-p/2} = \frac{1.645}{1.645}$.
- 3. Go to the table of lower critical values of the chi-square distribution and under the column labeled 0.99 in the row

labeled degrees of freedom = 42, find
$$x_1^2$$
, $x_1 = 23.650$.

4. Calculate this value with the 64 variety.

$$k_2 = \sqrt{\frac{(N-1)\left(1+\frac{1}{N}\right)z_{(1-3)/2}^2}{\left(\frac{2}{N},N-1\right)}} = \sqrt{\frac{42\left(\frac{44}{43}\right)(1.645)^2}{23.650}} = 2.217$$

$$\frac{23.650}{84} = 2.217$$

The tolerance limits are then computed from the sample mean, \vec{Y} , and standard deviation, S, according to case (1).

Important note

The notation for the critical value of the chi-square distribution can be confusing. Values as tabulated are, in a sense, already squared; whereas the critical value for the normal distribution must be squared in the formula above.

Dataplot commands for calculating

The Dataplot commands are:

the k factor for a twosided tolerance interval

```
let n = 43
let nu = n - 1
let p = .90
let g = .99
let ql=1-g
let pl=(1+p)/2
let cg=chsppf(gl,nu)
let np=norppf(p1)
let k = nu*(1+1/n)*np**2
let k2 = (k/cg)**.5
```

and the output is:

THE COMPUTED VALUE OF THE CONSTANT K2 = 0.2217316E+01

Another note

The notation for tail probabilities in Dataplot is the converse of the notation used in this handbook. Therefore, in the example above it is necessary to specify the critical value for the chi-square distribution, say, as chsppf(1-.99, 42) and similarly for the critical value for the normal distribution.

Direct calculation of tolerance intervals using Dataplot

Dataplot also has an option for calculating tolerance intervals directly from the data. The commands for producing tolerance intervals from twenty-five measurements of resistivity from a quality control study at a confidence level of 99% are:

read 100chm.dat cr wafer mo day h min op hum ... probe temp y sw di tolerance y

Automatic output is given for several levels of coverage, and the tolerance interval for 90% coverage is shown below in bold:

2-SIDED NORMAL TOLERANCE LIMITS: XBAR +- K*S

```
NUMBER OF OBSERVATIONS
                                25
                          = 97.069832
SAMPLE MEAN
SAMPLE STANDARD DEVIATION = 0.26798090E-01
```

99.% CONFIDENCE = UPPER LIMIT LOWER LIMIT COVERAGE (%)

50.0	97.04242	97.09724
75.0	97.02308	97.11658
90.0	97.00299	97.13667
95.0	96.99020	97.14946
99.0	96.96522	97.17445
99.9	96.93625	97.20341

Calculation for a onesided tolerance interval for a normal distribution

The calculation of an approximate k factor for one-sided tolerance intervals comes directly from the following set of formulas (Natrella, 1963):

$$k_{1} = \frac{z_{(-p)} + \sqrt{z_{1-p}^{2} - ab}}{a}$$

$$a = 1 - \frac{z_{1-y}^{2}}{2(N-1)}; \ b = z_{1-p}^{2} - \frac{z_{1-y}^{2}}{N}$$

where [1-A] is the critical value from the normal distribution that

is exceeded with probability 1-p and $\frac{7}{(1-j)}$ is the critical value from the normal distribution that is exceeded with probability $I-\gamma$.

Dataplot commands for calculating the k factor for a onesided tolerance interval

For the example above, it may also be of interest to guarantee with 0.99 probability (or 99% confidence) that 90% of the wafers have thicknesses less than an upper tolerance limit. This problem falls under case (3), and the Dataplot commands for calculating the factor for the one-sided tolerance interval are:

```
let n = 43
let p = .90
let q = .99
let nu = n-1
let zp = norppf(p)
let zg=norppf(g)
let a = 1 - ((zg^{**2})/(2*nu))
let b = zp**2 - (zg**2)/n
let k1 = (zp + (zp**2 - a*b)**.5)/a
```

and the output is:

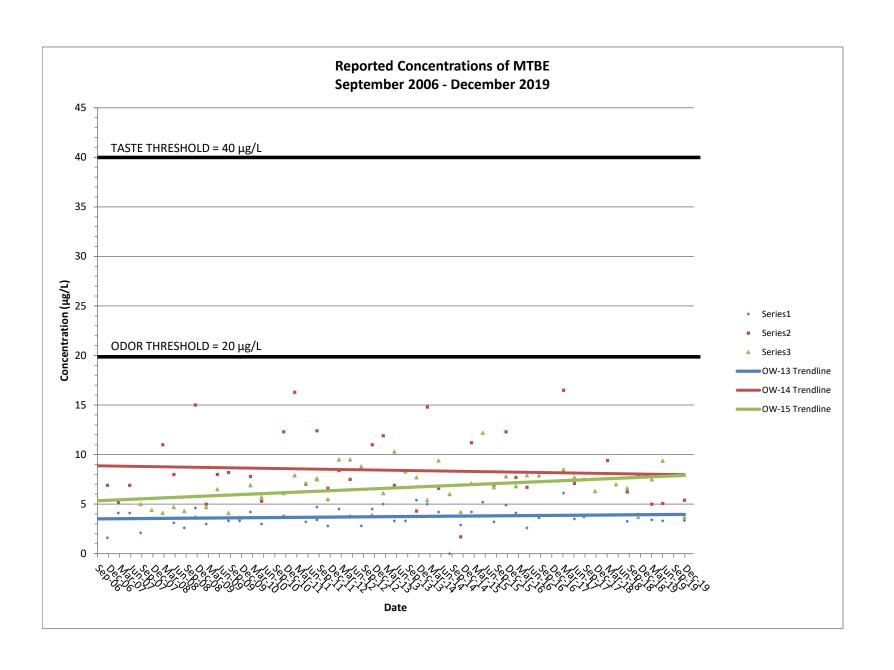
```
THE COMPUTED VALUE OF THE CONSTANT A =
THE COMPUTED VALUE OF THE CONSTANT B = 0.1516516E+01
THE COMPUTED VALUE OF THE CONSTANT K1 = 0.1875189E+01
```

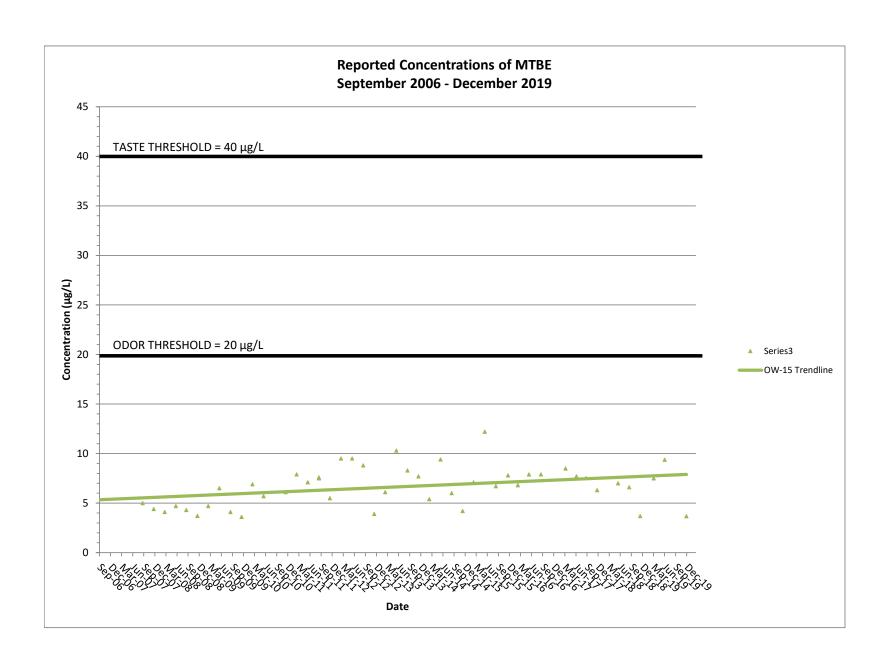
The upper (one-sided) tolerance limit is therefore 97.07 + 1.8752*2.68 = 102.096.

TABLE 3 BACKGROUND WELL HISTORICAL RESULTS MONITORING WELL OW-9

Concentration (units as specified for MCL)

	<u>Parameter</u>	DEC '03	SEP '03	<u>50' NUL</u>	MAR '03	DEC'02*	<u> 20, 7707</u>	MAR '01	00' 03 <u>0</u>
METALS	Antimony	<u>0.001</u>	<u>0.001</u>	0.001	<u>0.001</u>	0.001	0.005	0.005	Ø.005
	Arsenic	0 .005	<u>0.005</u>	0.005	0.005	0.005	0.005	0.005	0.005
	Barium	0.012	0.018	0,013	0.022	0.13	0.005	0.31	0.035
	Beryllium	<u>0.0005</u>	0.0005	0.0005	0.0005	<u>0.0005</u>	0.0005	0.0068	0.0005
	Cadmium	<u>0.001</u>	<u>0.001</u>	0.001	0.001	0.001	0.001	0.001	0.001
	Chromium	0.005	0.005	0.005	0.081	0.078	0.005	0.092	0.011
	Cobatt	<u>0.001</u>	0.001	0.001	0.0047	0.0320	0.0040	0.053	0.0065
	Copper	<u>0.005</u>	0.005	0.005	0.014	0.066	0.005	0,086	0.005
	Lead	0.002	0.002	0.0057	0.0052	0.548	0.002	0.061	0.010
	Nickel	<u>0.005</u>	<u>9.005</u>	0.005	0.073	0.064	0.005	0.070	0.013
	Selenium	<u>0.005</u>	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	Silver	<u>0.001</u>	0.001	0,001	0.001	0,001	0.001	0.001	0.001
	Thallium	<u>0.001</u>	0.001	0.001	0.001	0.001	0.0025	0.0025	0.003
	Vanadium	<u>0.005</u>	<u> 0.005</u>	0.005	0.005	0.038	0.005	0.011	0.005
	Zinc	810.0	0.027	0.021	0.04	0.13	0.005	0,18	0.036
	Mercury	<u>0.0001</u>	0.00072	<u>0.0001</u>	0.0001	<u>0.0001</u>	0.0001	0.0001	0.0001


Zinc Average (s) Zinc Standard Deviation (s)


0,057125 0.062802269

APPENDIX J

Reported Concentrations of MTBE

APPENDIX K

Quarterly Monitoring Reports

June 19, 2019

PARECORP.COM

Mr. Leo Hellested, P.E.
Office of Waste Management
Solid Waste Section
Rhode Island Department of Environmental Management
235 Promenade Street
Providence, Rhode Island 02908-5767

Attn: Mr. Robert Schmidt

Re: Quarterly Monitoring Report

1st Quarter (March) 2019, Groundwater Monitoring, Sampling, and Analysis

Tiverton Municipal Sanitary Landfill

Pare Project No.: 94139.24

Dear Mr. Hellested:

Enclosed herewith are results of the statistical analysis of groundwater monitoring data for the first quarterly monitoring round of Year 2019 from the Tiverton Landfill (Landfill). Pare Corporation (Pare) has prepared this report on behalf of the Town of Tiverton (Town). Pare conducted the groundwater sampling on March 28, 2019 at the background well OW-9 and compliance wells OW-7, OW-12, OW-13, OW-14, OW-15, and OW-16.

Groundwater samples were analyzed by New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island for the constituents listed in Appendix A (Detection Monitoring) of the State Solid Waste Regulations. Certified laboratory results data are enclosed and are summarized on attached Tables 1-3.

Groundwater field parameters consisting of temperature, pH, and specific conductivity were measured at each monitoring well, in accordance with the RIDEM-approved Groundwater Monitoring Plan for the Landfill. Field parameters were collected until three successive measurements stabilized within \pm 3% for temperature, \pm 0.1 standard unit for pH, and \pm 3% for specific conductivity, in accordance with US EPA's Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. Field parameters are documented on Field Sampling Data Sheets, which are enclosed.

Combustible gases are monitored at each well and at the top of the Landfill. Each of the well locations with the exception of OW-15 had no detections of combustible gas observed during this monitoring round. OW-15 had a methane reading of 44% LEL. Combustible gases have not been detected at the Landfill in past quarterly monitoring rounds – this is the first round in which a detectable level of combustible gas have been detected at any groundwater monitoring wells. OW-15 is over 300 feet from the nearest property line and given that no other wells had combustible gases at detectable levels, it does not appear that this occurrence of combustible gases warrants immediate action. Pare will continue to monitor for combustible gases at OW-15, and the other monitoring wells to evaluate if this occurrence is the beginning of an increasing trend in gas at the landfill or a sampling anomaly.

8 BLACKSTONE VALLEY PLACE LINCOLN, RI 02865

HUMAN HEALTH THRESHOLD EVALUATION

<u>Background Well OW-9</u> – Eleven (11) target metals were reported in the groundwater sample collected from OW-9. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-9. No (0) target VOCs were reported above laboratory detection limits at OW-9.

Compliance Well OW-7 – Eleven (11) target metals were reported in the groundwater sample collected from OW-7. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-7. One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-7.

Compliance Well OW-12 – Five (5) target metals were reported in the groundwater sample collected from OW-12. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-12. No (0) target VOCs were reported above laboratory detection limits at OW-12.

Compliance Well OW-13 – Nine (9) target metals were reported in the groundwater sample collected from OW-13. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-13. Two (2) target VOCs; chlorobenzene and MTBE; were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-13.

Compliance Well OW-14 – Ten (10) target metals were reported in the groundwater sample collected from OW-14. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-7. Four (4) target VOCs, MTBE, benzene, chlorobenzene, and 1,4-dichlorobenzene, were reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-14.

Compliance Well OW-15 – Nine (9) target metals were reported in the groundwater sample collected from OW-15. One (1) reported metal; arsenic (0.0352 mg/L); exceeded its MCL (0.01 mg/). Four (4) target VOCs; MTBE, benzene, chlorobenzene, and 1,4-dichlorobenzene were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-15.

Compliance Well OW-16 – Seven (7) target metals were reported in the groundwater sample collected from OW-16. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-16. One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-16.

Mr. Leo Hellested, P.E. (3) June 19, 2019

TOLERANCE INTERVAL STATISTICAL EVALUATION

The Tolerance Interval (TI) approach was used to develop Tolerance Limits (TLs) for each target inorganic constituent (i.e., metals) using the background well analytical results from the eight preceding rounds for which analytical results are available. The background well, OW-9, could not be sampled in several previous monitoring rounds including in the June 2016, September 2016, June 2017, September 2017, and September 2018 monitoring rounds due to dry conditions. Therefore, analytical results of the eight most recent rounds in which samples could be collected were utilized to generate the TLs for this monitoring round, dating back to December 2015. The TI approach is considered inappropriate for analysis of organic constituents and was therefore not performed to evaluate the results of reported VOCs. Table 2 summarizes historical results data from OW-9 used in the calculation of the TLs.

Four (4) metals; arsenic, barium, cobalt, and selenium; had reported concentrations that exceeded their corresponding TLs calculated during the March 2019 monitoring round in at least one compliance well. In total, there were eight (8) TL exceedances of these metals in this monitoring round. The TLs and the corresponding compliance well data from this monitoring round are presented in Table 3. Arsenic, barium, and cobalt are routinely detected in groundwater beneath the landfill.

CUSUM METHOD STATISTICAL EVALUATION

The Shewhart-CUSUM Method, a supplemental statistical analysis method used in addition to the TI Method, was performed in accordance with the US EPA documents titled "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Interim Final Guidance, April 1989" and "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Addendum to Interim Final Guidance, July, 1992".

Barium at OW-12 and OW-13 and copper at OW-13 exceeded both of their respective Shewhart-CUSUM thresholds during the March 2019 monitoring round.

ASSESSMENT MONITORING

The Shewhart-CUSUM analysis is utilized, along with the Tolerance Limits, to identify when Assessment Monitoring should be performed.

Pare performed Assessment Monitoring at OW-13 in the June 2018 monitoring round due to an exceedance of both the TL and the Shewhart-CUSUM threshold of barium in the March 2018 monitoring round. No (0) Appendix B parameters were reported in samples collected from OW-13.

One (1) Appendix B parameter, sulfides, was reported above its respective detection limits in December 2017, as a result, Pare recommended that OW-14 be tested for sulfides in March 2018. Sulfides (0.04 mg/L) were detected in the samples collected from OW-14 in March 2018. Pare attempted to sample OW-14 in the September 2018 monitoring round to test for sulfides; however, a sample was unobtainable due to dry conditions. Pare sampled OW-14 for sulfides in December 2018. Sulfides were not detected in the samples collected at OW-14 during the December 2018 monitoring round.

Mr. Leo Hellested, P.E. (4) June 19, 2019

Pare sampled OW-14 for sulfides in the March 2019 monitoring round. Sulfides were not detected in the samples collected at OW-14 during this monitoring round.

SURFACE WATER MONITORING

Per the request of the RIDEM in a letter dated January 31, 2019, the Town began incorporating surface water monitoring at surface water locations SW-1, SW-2, and SW-3 into the existing regular quarterly monitoring program. The parameters for surface water monitoring include: Appendix A metals, mercury, tin, iron, ammonia, TKN, total nitrogen, total phosphorus, and hardness. Additionally, field screening was performed at each surface water location to determine temperature, pH, and specific conductivity.

Monitoring Location SW-1 – Eight (8) target metals were detected in the surface water sample collected at SW-1. No (0) metals were detected above their respective aquatic life thresholds. Two (2) parameters, iron (0.521 mg/L) and total phosphorous (0.05 mg/L), exceeded their human health threshold (0.3 mg/L and 0.05 mg/L, respectively) but did not exceed their aquatic life thresholds. Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-1; however, they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Monitoring Location SW-2 – Nine (9) target metals were detected in the surface water sample collected at SW-2. No (0) metals were detected above their respective aquatic life thresholds. One (1) parameter, iron (0.516 mg/L), exceeded its human health threshold (0.3 mg/L) but did not exceed its aquatic life threshold. Additionally, total nitrogen and TKN were detected in the samples collected at SW-2; however, no threshold values have been established for these parameters.

Monitoring Location SW-3 – Eight (8) target metals were detected in the surface water sample collected at SW-3. One (1) metal, lead (0.0009 mg/L), was detected above its chronic aquatic life threshold (0.0005 mg/L). One parameter, iron (0.449 mg/L), exceeded its human health threshold (0.3 mg/L) but did not exceed its aquatic life threshold. Additionally, total nitrogen and TKN were detected in the samples collected at SW-3; however, no threshold values have been provided for these parameters.

MTBE ANALYSIS

Many of the most recent Assessment Monitoring rounds have been conducted due to MTBE concentrations in groundwater. Reported MTBE concentrations have generally risen since September 2006, as depicted in the attached figure titled Reported Concentrations of MTBE. The figure compares the recent increases in reported MTBE concentrations at OW-13, OW-14 and OW-15 to historical concentrations and drinking water advisories defined in the US EPA document titled "2011 Edition of the Drinking Water Standards and Health Advisories". Although reported MTBE concentrations appear to be trending slowly upward, MTBE has never been reported above its odor threshold (0.020 mg/L) or its taste threshold (0.040 mg/L). The US EPA has not established a human health advisory concentration for MTBE.

Because the elevated concentrations of MTBE have recently triggered Assessment Monitoring at OW-13, OW-14, and OW-15, and that no Appendix B parameters were reported to a significant degree at these wells, it is Pare's opinion that the increasing trend in MTBE concentrations beneath the Landfill is an isolated phenomenon and not the result of a significant change in groundwater quality beneath the Landfill.

Mr. Leo Hellested, P.E. (5) June 19, 2019

Despite CUSUM values of MTBE at OW-13, OW-14, and OW-15 remaining above their threshold during the September 2017 monitoring round, Pare does not recommend assessment monitoring due to the aforementioned MTBE trend. The lack of Appendix B parameters in the past, in conjunction with the lack of Appendix B parameters at OW-13 and OW-15 during the December 2016 monitoring round, and the lack of Appendix B parameters at OW-14 during the June 2016 monitoring round, suggests that the presence of MTBE trend does not indicate an increased likelihood that Appendix B parameters would be present beneath the Landfill.

CONCLUSIONS AND RECOMMENDATIONS

Currently, the Landfill conducts Detection Monitoring for the parameters listed in Appendix A of the State Solid Waste Regulations, as well as mercury and tin. During this monitoring round, four (4) metals; arsenic, barium, cobalt and selenium; exceeded their tolerance limits (TLs) in at least one well. Arsenic exceeded its TL during the previous monitoring round at OW-13 and OW-15. Barium exceeded its TL during the previous monitoring round at OW-13, OW-14, and OW-15. Cobalt exceeded its TL during the previous monitoring round at OW-7, OW-13, OW-14, and OW-15. Exceedances in two consecutive monitoring rounds is one of the criteria used to consider performing Assessment Monitoring in subsequent monitoring rounds.

The only parameter that might trigger Assessment Monitoring is barium at OW-3, which had two previous TL exceedances and a Shewhart-CUSUM exceedance this round. Barium is consistently detected in all the groundwater monitoring wells on-site at concentrations consistent with the recent detection at OW-13. As such, it does not, in Pare's opinion, appear as though this recent detection is a significant change in groundwater quality beneath the landfill, and therefore, Pare does not recommend Assessment Monitoring in June 2019.

Since the 2016 monitoring periods, a rising trend in detections of antimony at the compliance wells became apparent. Antimony was detected at the background well above its MCL during the December 2017 monitoring round. Antimony was detected at the background well again during the March 2019 monitoring round but below its MCL. Previously, antimony had not been detected at the background well since the September 2011 monitoring round. The detection of antimony at compliance well OW-14 in the June 2017 monitoring round triggered Assessment Monitoring, which was performed in the December 2017 monitoring round. The Assessment Monitoring resulted in detection of one Appendix B parameter, sulfides (0.04 mg/L). However, antimony was not detected at any groundwater well during the December 2017 monitoring period. Analysis of the samples collected from OW-14 during the March 2018 monitoring round indicated another detection of sulfides (0.04 mg/L). Assessment Monitoring was not performed at OW-14 in June but was performed at OW-13. Sulfides were not detected in the Assessment Monitoring performed at OW-13 during the June 2018 monitoring round. OW-14 was attempted to be sampled again for sulfides in the September 2018 monitoring round; however, a sample was unable to be collected due to dry conditions. OW-14 was sampled again in the December 2018 and March 2019 monitoring rounds, but sulfides were not detected in either round.

The EPA has no MCL for sulfides in groundwater. Water with dissolved hydrogen sulfide will smell musty or swampy around 0.5-1.0 mg/L and Pare did not identify a noticeable smell emanating from the groundwater sample in either round during which the constituent was detected. Hydrogen sulfide gas can occur naturally in groundwater from plant materials rotting underground in anaerobic conditions. Hydrogen sulfide gas could also be resulting from gypsum buried at the Landfill. Sulfides have not been detected at OW-14 for the past

Mr. Leo Hellested, P.E. (6) June 19, 2019

two (2) monitoring rounds that the well has been sampled. Therefore, Pare recommends that sulfide monitoring be discontinued at OW-14 for the June 2019 monitoring round.

Pare recommended that wells OW-7 and OW-16 be incorporated into the compliance monitoring regimen in the 2017 Annual Groundwater Monitoring Report. Despite OW-7 having several years of sampling data, the sampling rounds were selected on a rotating basis with wells OW-6 and OW-8 for alternate monitoring. Pare recommends that wells OW-7 and OW-16 be sampled for two years, or eight consecutive monitoring rounds, prior to initiating statistical analysis. The March 2019 monitoring period marks the fifth monitoring round that these wells are to be sampled consistently; therefore, it is estimated that statistical analysis for the bedrock and overburden wells will begin in the March 2020 monitoring round.

Should the RIDEM have any questions regarding this letter or the attached data, please feel free to contact the undersigned at (401) 334-4100, thank you.

Very truly yours,

Timothy P. Thies, P.E. Senior Vice President

TPT/TCJ/abv

Attachments

cc: Richard Rogers, Tiverton Public Works Director (w/encl.)
Jay Lambert, Tiverton Landfill Subcommittee (w/encl.)
Jan Reitsma, Tiverton Town Administrator (w/encl.)
Travis C. Johnson, Pare Corporation (w/o encl.)

Z:\JOBS\01 - Earlier Jobs\94139.00\94139.24\March 2019\March 2019 Quarterly Report.doc

<u>ATTACHMENT NO. 1</u> LABORATORY ANALYTICAL DATA REPORT

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9C29050 Client Project: 94139 - Tiverton Landfill

Report Date: 08-April-2019

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com NETLAB Case Number: 9C29050

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/29/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9C29050. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9C29050-01	OW-9	Water	03/28/2019	03/29/2019
9C29050-02	OW-12	Water	03/28/2019	03/29/2019
9C29050-03	OW-7	Water	03/28/2019	03/29/2019
9C29050-04	OW-16	Water	03/28/2019	03/29/2019
9C29050-05	OW-14	Water	03/28/2019	03/29/2019
9C29050-06	OW-15	Water	03/28/2019	03/29/2019
9C29050-07	OW-13	Water	03/28/2019	03/29/2019
9C29050-08	SW-1	Water	03/28/2019	03/29/2019
9C29050-09	SW-2	Water	03/28/2019	03/29/2019
9C29050-10	SW-3	Water	03/28/2019	03/29/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-12 (Lab Number: 9C29050-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-13 (Lab Number: 9C29050-07)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-14 (Lab Number: 9C29050-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8

Request for Analysis (continued)

OW-14 (Lab Number: 9C29050-05) (continued)

<u>Analysis</u>	<u>Method</u>
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Sulfide	SM4500-S-D
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-15 (Lab Number: 9C29050-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

Request for Analysis (continued)

OW-16 (Lab Number: 9C29050-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-7 (Lab Number: 9C29050-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

Request for Analysis (continued)

OW-9 (Lab Number: 9C29050-01)

<u>Analysis</u>	Method
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 200.8
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

SW-1 (Lab Number: 9C29050-08)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B
Mercury	EPA 200.8
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E
Vanadium	EPA 200.8
Zinc	EPA 200.8

Request for Analysis (continued)

SW-2 (Lab Number: 9C29050-09)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B
Mercury	EPA 200.8
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-3 (Lab Number: 9C29050-10)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B
Mercury	EPA 200.8
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E
Vanadium	EPA 200.8
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994 Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA Soil Survey Laboratory Methods Manual, USDA/NCRS, 2014

NETLAB Case Number: 9C29050

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Wet Chemistry

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

Sample: OW-14 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
18496-25-8	Sulfide	376.2	ND	0.01

Sample: SW-1 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)	
7664 41 7	A	SM4500-	0.2	0.2	0.1
7664-41-7	Ammonia	NH3-D	0.2	0.1	
	TVN	SM-4500-	0.4	0.1	
	TKN	NH3-D	0.4		
	Total Phaenharus	SM-4500-P-	0.05	0.05	0.02
	Total Phosphorus	E		0.02	
7727-37-9	Total Nitrogen	Calculation	1.50	0.100	

ND = Not Detected

Sample: SW-2 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7664-41-7	Ammonia	SM4500- NH3-D	ND	0.1
	TKN	SM-4500- NH3-D	0.5	0.1
	Total Phosphorus	SM-4500-P- E	ND	0.02
7727-37-9	Total Nitrogen	Calculation	0.500	0.100

ND = Not Detected

Sample: SW-3 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7664-41-7	Ammonia	SM4500-	ND	0.1
7004-41-7	Allillollia	NH3-D	ND	0.1
	TKN	SM-4500-	0.2	0.1
	I KIN	NH3-D	NH3-D 0.3	
	Total Phosphorus	SM-4500-P-	ND	0.02
	Total i nospiloras	Е	ND	0.02
7727-37-9	Total Nitrogen	Calculation	0.300	0.100

Sample: OW-9 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	0.0001	0.0001
7440-38-2	Arsenic	6010C	0.0001	0.0001
7440-39-3	Barium	6010C	0.006	0.001
7440-41-7	Beryllium	6010C	0.0003	0.0001
7440-43-9	Cadmium	6010C	0.0001	0.0001
7440-47-3	Chromium	6010C	0.0019	0.0001
7440-48-4	Cobalt	6010C	0.0003	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.001	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.0005	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	0.003	0.001
7439-92-1	Lead	6010C	0.0007	0.0001

Sample: OW-12 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	ND	0.0001
7440-39-3	Barium	6010C	0.020	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	0.0004	0.0001
7440-47-3	Chromium	6010C	ND	0.0001
7440-48-4	Cobalt	6010C	0.0005	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.010	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.003	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	ND	0.001
7439-92-1	Lead	6010C	ND	0.0001

Sample: OW-7 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0002	0.0001
7440-39-3	Barium	6010C	0.034	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	0.0007	0.0001
7440-47-3	Chromium	6010C	0.0011	0.0001
7440-48-4	Cobalt	6010C	0.0090	0.0001
7440-50-8	Copper	6010C	0.002	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.011	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.0002	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	0.0013	0.0005
7440-66-6	Zinc	6010C	0.006	0.001
7439-92-1	Lead	6010C	0.0013	0.0001

Sample: OW-16 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	ND	0.0001
7440-39-3	Barium	6010C	0.014	0.001
7440-41-7	Beryllium	6010C	0.0001	0.0001
7440-43-9	Cadmium	6010C	0.0003	0.0001
7440-47-3	Chromium	6010C	ND	0.0001
7440-48-4	Cobalt	6010C	0.0008	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.002	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.0001	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	0.004	0.001
7439-92-1	Lead	6010C	ND	0.0001

Sample: OW-14 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	0.0001	0.0001
7440-38-2	Arsenic	6010C	0.0018	0.0001
7440-39-3	Barium	6010C	0.202	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	ND	0.0001
7440-47-3	Chromium	6010C	0.0007	0.0001
7440-48-4	Cobalt	6010C	0.0059	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.011	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.0002	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	0.0007	0.0005
7440-66-6	Zinc	6010C	0.004	0.001
7439-92-1	Lead	6010C	0.0010	0.0001

Sample: OW-15 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0352	0.0001
7440-39-3	Barium	6010C	0.158	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	ND	0.0001
7440-47-3	Chromium	6010C	0.0007	0.0001
7440-48-4	Cobalt	6010C	0.0126	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.025	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	0.0001	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	0.0010	0.0005
7440-66-6	Zinc	6010C	0.003	0.001
7439-92-1	Lead	6010C	0.0003	0.0001

Sample: OW-13 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0081	0.0001
7440-39-3	Barium	6010C	0.118	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	0.0004	0.0001
7440-47-3	Chromium	6010C	0.0004	0.0001
7440-48-4	Cobalt	6010C	0.0112	0.0001
7440-50-8	Copper	6010C	0.004	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.011	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	ND	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	0.005	0.001
7439-92-1	Lead	6010C	0.0008	0.0001

Sample: SW-1 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0002	0.0001
7440-39-3	Barium	6010C	0.023	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	ND	0.0001
7440-47-3	Chromium	6010C	0.0002	0.0001
7440-48-4	Cobalt	6010C	0.0002	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-89-6	Iron	6010C	0.521	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.001	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	ND	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	0.002	0.001
7439-92-1	Lead	6010C	0.0003	0.0001

ND = Not Detected

Sample: SW-2 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0003	0.0001
7440-39-3	Barium	6010C	0.006	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	ND	0.0001
7440-47-3	Chromium	6010C	0.0005	0.0001
7440-48-4	Cobalt	6010C	0.0002	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-89-6	Iron	6010C	0.516	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.001	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	ND	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	0.0006	0.0005
7440-66-6	Zinc	6010C	0.003	0.001
7439-92-1	Lead	6010C	0.0003	0.0001

Sample: SW-3 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.0001
7440-38-2	Arsenic	6010C	0.0002	0.0001
7440-39-3	Barium	6010C	0.007	0.001
7440-41-7	Beryllium	6010C	ND	0.0001
7440-43-9	Cadmium	6010C	ND	0.0001
7440-47-3	Chromium	6010C	0.0003	0.0001
7440-48-4	Cobalt	6010C	0.0002	0.0001
7440-50-8	Copper	6010C	ND	0.001
7439-89-6	Iron	6010C	0.449	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.002	0.001
7782-49-2	Selenium	6010C	ND	0.005
7440-22-44	Silver	6010C	ND	0.0001
7440-28-0	Thallium	7010	ND	0.0001
7440-34-5	Tin	6010C	ND	0.005
7440-62-2	Vanadium	6010C	ND	0.0005
7440-66-6	Zinc	6010C	0.004	0.001
7439-92-1	Lead	6010C	0.0009	0.0001

Sample: SW-1 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
(Total)	Hardness	6010C	112	0.125

ND = Not Detected

Sample: SW-2 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
(Total)	Hardness	6010C	20.6	0.125

ND = Not Detected

Sample: SW-3 Case Number: 9C29050

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
(Total)	Hardness	6010C	23.7	0.125

Case Number: 9C29050

Sample: OW-9 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile Methacrylonitrile	ND ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-9 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	107%	70-130
1,2-Dichloroethane d4	103%	70-130
4 BFB	99%	70-130

Case Number: 9C29050

Sample: OW-12 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-12 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	104%	70-130
1,2-Dichloroethane d4	106%	70-130
4 BFB	95%	70-130

Case Number: 9C29050

Sample: OW-7 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-7 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	4.0	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	122%	70-130
1,2-Dichloroethane d4	89%	70-130
4 BFB	101%	70-130

Case Number: 9C29050

Sample: OW-16 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-16 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	4.67	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	105%	70-130
1,2-Dichloroethane d4	94%	70-130
4 BFB	100%	70-130

Case Number: 9C29050

Sample: OW-14 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	2.1	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	10.8	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-14 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.1	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	5.0	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	100%	70-130
1,2-Dichloroethane d4	99%	70-130
4 BFB	97%	70-130

Case Number: 9C29050

Sample: OW-15 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	1.5	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	13.2	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-15 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.1	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	7.5	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	108%	70-130
1,2-Dichloroethane d4	100%	70-130
4 BFB	103%	70-130

Case Number: 9C29050

Sample: OW-13 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	5.9	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-13 Case Number: 9C29050

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.4	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	109%	70-130
1,2-Dichloroethane d4	102%	70-130
4 BFB	99%	70-130

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street West Warwick, RI 02893 CHAIN CHAIN	1. \$5		CLEGFO.COM OF THE OF TH	S. L. R. CONTAINERS V. S.	X	x x x x x x x x x x x x x x x x x x x	X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X		X X X X X X X X X X X X X X X X X X X	x	x	DeterTime Laboratory Remarks: U	3/28/17 5:30, BReleased Cooled	Cate/Ime	Pate/Time Received for Laboratory by: (Signature)	
) TESTIN	ST NAME/LOCATIC	-ostatio	Spen (© H ≺ B														
NEW ENGLAND TF 59 Greenhill Street West Warwick, RI 02893 1-888-863-8522	39.24	CLIENT Pare Co	REPORT TO: A	DATE TIME O	3/24/8/11:52	7.0	3:00	3:45	4:30	2005	3/28/19 10:45an	9:30	\$1:07	Sampled by: (Signature)	Media	Heinquisned by: (Signature)	Relinquis/63 by: (Signature)	Drachan

ATTACHMENT NO. 2 ANALYTICAL SUMMARY TABLES

TABLE 2 BACKGROUND WELL HISTORICAL RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-9 Concentration (Expressed in same units as Threshold Value)

Parameter .	Threshold	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC 15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEP '13	JUN '13	MAR '13	DEC '12	SEP '12	JUN '12	MAR '12	DEC '11	SEP '11	JUN '11	MAR '11	DEC '10	SEP '10	JUN '10
	Value						_																														
Antimony Arsenic	0.006 mg/L ¹	0.0001	ND ND	NT NT	ND ND	ND ND	0.0290 ND	NT NT	NT NT	ND 0.0030	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	0.0160 ND	0.2000 ND	ND ND	ND ND	NT	ND ND
Barium	2 mg/L1	0.0001	0.0320	NT	0.0090	0.0130	0.0410	NT	NT	0.0100	0.0060	NT	NT	0.0110	0.0110	NT	NT	0.0070	0.0420	NT	0.0100	0.0120	0.0200	NT	0.0150	0.0130	0.0160	NT	0.0110	0.0120	0.0070	0.0120	0.0080	0.0221	0.0230	NT	0.0460
Beryllium	0.004 mg/L1	0.0003	ND	NT	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND.	NT	ND	ND	ND	NT	ND	NT	0.0015						
Cadmium	0.005 mg/L ¹	0.0001	ND	NT	ND	0.0020	0.3650	NT	NT	ND	ND	NT	NT	0.0010	ND	NT	NT	ND	0.0020	NT	ND	ND	0.0050	NT	0.0040		0.0010	NT	ND	ND	ND	0.0020	ND	ND	ND	NT	ND
Chromium Cobalt	0.1 mg/L ¹ 0.73 mg/L ⁵	0.0019	0.013	NT NT	0.003 ND	0.0070	0.0300	NT NT	NT NT	0.0040 ND	ND ND	NT NT	NT NT	0.0050 ND	0.0070 ND	NT NT	NT NT	0.0060 ND	0.0270	NT NT	0.0060 ND	0.0070	0.0150	NT NT	0.0070	0.0070	0.0120	NT NT	0.0050 ND	0.0080	0.0040 ND	0.0020 ND	ND ND	0.0079	0.0068	NT NT	0.0230
Copper	1.3 mg/L ¹	ND	0.0030	NT	ND	ND	0.0620	NT	NT	ND ND	ND.	NT	NT	0.0020	ND	NT	NT	0.0020	0.0100	NT	ND	0.0010	0.0030	NT	0.0020	ND	0.0030	NT	ND ND	0.0020	0.0010	0.0100	0.0400	0.0019	0.0015	NT	0.0200
Lead	0.015 mg/L ¹	0.0007	0.004	NT	0.001	0.0020	0.1820	NT	NT	0.0020	0.0060	NT	NT	ND	0.0050	NT	NT	0.0010	0.0160	NT	0.0060	0.0030	0.1020	NT	0.0080	0.0020	0.0060	NT	ND	0.0110	0.0010	0.0040	0.0060	ND	ND	NT	0.0140
Mercury	0.002 mg/L ¹	ND	ND	NT	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Nickel	0.1 mg/L ²	0.0010	0.006	NT	0.001	0.0040	0.0240	NT	NT NT	0.0040	ND	NT	NT	0.0030	0.0030	NT NT	NT	0.0170	0.0180	NT NT	0.0030	0.0040	0.0090	NT	0.0050	0.0050	0.0070	NT NT	0.0030	0.0040	0.0020	0.0080	0.0080	0.0046	0.0037	NT	0.0150
Selenium	0.05 ma/L ¹ 0.1 ma/L ^{2,3}	ND 0.0005	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	0.0100 ND	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	0.0060 ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	0.0100 ND	0.0100	ND ND	ND ND	NT NT	ND ND
Thallum	0.002 mg/L ¹	ND	ND	NT	ND	ND ND	ND ND	NT	NT	ND ND	ND	NT	NT	ND ND	ND	NT	NT	ND	ND	NT	ND	ND	ND ND	NT	ND	ND	ND	NT	ND ND	ND ND	ND ND	ND I	ND.	ND	ND	NT	ND ND
Tin	22 mg/L ⁵	ND	ND	NT	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	0.0080	0.1310	NT	ND	ND	ND	NT	ND	ND	ND	ND	0.0190	ND	ND	NT	ND
Vanadium	0.26 mg/L ⁵	ND	0.0080	NT	ND	0.0020	ND	NT	NT	ND	ND	NT	NT	0.0010	0.0020	NT	NT	ND	0.0140	NT	0.0020	0.0030	0.0070	NT	0.0030	0.0020	0.0040	NT	ND	0.0010	ND	ND	ND	0.0034	0.0034	NT	0.0150
Zinc Acetone	2 mg/L ^{2,3} 610 μg/L ⁸	0.0030 ND	0.0250 ND	NT NT	0.0090 ND	0.0190 ND	11.1000 ND	NT NT	NT NT	0.0070 ND	ND NT	NT NT	NT NT	0.0100 ND	0.0050 ND	NT NT	NT NT	ND ND	0.0410 ND	NT NT	0.0110 ND	0.0080 ND	0.0170 ND	NT NT	0.0210 ND	0.0120 ND	0.0160 ND	NT NT	0.0150 ND	0.0120 ND	0.0090 ND	0.0140 ND	ND ND	0.0257 ND	0.0190 ND	NT NT	0.0330 ND
Acrylonitrile	0.039 µg/L"	ND ND	ND	NT	ND	ND ND	ND ND	NT	NT	ND ND	NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NT	ND ND
Benzene	5 μg/L'	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Bromochloromethane	80 μg/L ²	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Bromodichloromethane (THM)	90 µ9 ¹ L	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Bromoform Carbon disulfide	80 µgL ³ 1000 µgL ³	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
Carbon tetrachloride	5 μg/L ¹	ND	ND.	NT	ND	ND.	ND	NT	NT	ND	NT	NT	NT	ND.	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND.	ND ND	NT	ND	ND	ND	ND.	ND	ND	ND ND	NT	ND
Chlorobenzene	100 µ9 ¹ L ¹	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Chloroethane	4.6 μg/L ⁵	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Chloroform (THM) Chlorodibromomethane (THM)	80 μg/L' 80 μg/L'	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
1,2-Dibromo-3-chloropropane (DBC	0.2 μg/L ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT.	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT	NI	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	NT NT	ND ND						
1,2-Dibromoethane (EDB)	0.05 µg/L'	ND	ND.	NT	ND	ND.	ND	NT	NT	ND	NT	NT	NT	ND.	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND.	ND ND	NT	ND	ND	ND	ND.	ND	ND	ND ND	NT	ND
1,2-Dichlorobenzene	600 µg/L'	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
1,4-Dichlorobenzene	75 µ9 ¹ L¹	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
trans-1,4-Dichloro-2-butene 1,1-Dichloroethane	μg/L 5 μg/L	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
1,2-Dichloroethane	5 ugl	ND ND	ND.	NT	ND ND	ND ND	ND ND	NT	NT	ND ND	NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT	ND ND
1,1-Dichloroethylene	7 μg/L¹	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
cis-1,2-Dichloroethene	70 µ9 ¹ L ¹	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
trans-1,2-Dichloroethene	100 μg/L ¹ 5 μg/L ¹	ND	ND	NT	ND	ND	ND	NT	NT NT	ND	NT NT	NT	NT	ND ND	ND	NT NT	NT NT	ND	ND ND	NT NT	ND	ND ND	ND	NT	ND	ND	ND ND	NT	ND	ND ND	ND	ND	ND	ND	ND	NT NT	ND
1,2-Dichloropropane cis-1,3-Dichloropropene	ը μց/L	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
trans-1,3-Dichloropropene	µg/L	ND	ND.	NT	ND	ND.	ND	NT	NT	ND	NT	NT	NT	ND.	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND.	ND ND	NT	ND	ND	ND	ND.	ND	ND	ND ND	NT	ND
Ethylbenzene	700 µg/L1	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Methyl butyl ketone(2-Hexanone)	160 µg/L"	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Bromomethane Chloromethane	10 μgl." 30 μgl."	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
Dibromomethane	61 μg/L ^b	ND ND	ND	NT	ND	ND ND	ND ND	NT	NT	ND ND	NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NT	ND ND
Methylene chloride	5 μg/L'	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Methyl ethyl ketone(2-Butanone)	4000 μgL ²	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Methyl iodide	μgL μgL	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
4-Methyl-2-pentanone Styrene	100 µ9°L	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT.	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NI NT	ND ND	NT NT	ND ND						
1,1,1,2-Tetrachloroethane	70 µg/L²	ND	ND.	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND.	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND.	ND ND	NT	ND	ND	ND	ND.	ND	ND	ND ND	NT	ND
1,1,2,2-Tetrachloroethane	0.3 μg/L ²	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Tetrachloroethylene(PCE)	5 μg/L1	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	2.1	ND	ND	NT	ND	NT	ND						
Toluene	1000 µgL1	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
1,1,1-Trichloroethane 1,1,2-Trichloroethane	200 μg/L' 5 μg/L'	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
Trichloroethylene(TCE)	5 μg/L'	ND	ND	NT	ND	ND ND	ND	NT	NT	ND	NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND	NT	ND	ND	ND ND	NT	ND	ND ND	ND	NT	ND ND	ND	ND	ND ND	ND	ND	ND	NT	ND
Trichloroflouromethane	2000 µg/L*	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
1,2,3-Trichloropropane	40 μg/L²	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
Vinyl acetate Vinyl chloride	410 μgL ³ 2 μgL ³	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	NT NT	ND ND						
Vinyi chionde Xvienes	2 μg/L 10000 μg/L'	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	NT	ND ND	NT NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NI NT	ND ND	NT NT	ND ND						
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	NT	ND						
		eded MCI																																			

- 1. Threshold value given is the Maximum Contaminant Level (MCL), as growded in the USEPA 2004 Edition of the Dinking Water Standards and Health Advisories
 2. Threshold value given is the filter health advisory as provided in the USEPA 2004 Edition of the Dinking Water Standards and Health Advisories
 3. Threshold value given is the Scordardy Dinking Water Regulation (SVIII) as provided in the USEPA 2004 Edition of the Dinking Water Advisory as provided in the USEPA 2006 Edition of the Dinking Water Standards and Health Advisories
 4. Threshold value given is the Dinking Water Advisory as provided in the USEPA 2006 Edition of the Dinking Water Standards and Health Advisories
 5. Threshold value given is the Plastinesing Remodel Good (PRI) of 10 me user, as provided in the Oscider 2004 USEPA 2009 PRIOS Table 2000 Update
 6. Constituted concentration was reported above its biboratory remodel detection list, but lever than its biboratory reporting linit and historical reporting limit.
 6. However, the reporting in this round was significantly higher than provide propring limit and historical reporting limits series reported above the consistent with historical date, only those consistence with concentrations lower than historical reporting limits were reported as non-detect.

No threshold value has been provided for parameters not identified in the sources listed above
" = One half of the libboratory detection limit "DL"
NT = Not Tested due to dry conditions at well.

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS

MONITORING WELL OW-7

Concentration (expressed in same units as MCL)

		Concentration (expressed in same units as MCL)											
<u>Parameter</u>	Max. Cont. Level (MCL)	DEC '01	SEP '01	SEP '99	SEP '98	JUN '98	SEP '97	SEP '96	MAR'96	SEP '95	JUN. '95	DEC'94	SEP.'94
			<u> </u>	<u> </u>						·			
Antimony	0.006 mg/l	ND ND	ND ND	ND ND	ND	ND 0.015	ND	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic Barium	0.05 mg/l 2 mg/l	0.12	0.14	0.10	0.017 0.33	0.015	ND 0.085	0.066 0.232	0.18 0.533	0.15 0.351	0.073 0.364	0.1 1.11	0.041 0.352
Beryllium	0.004 mg/l	0.0020	ND	0.0028	0.0083	0.007	0.003 ND	0.0046	0.0149	0.0084	0.0077	0.03	0.007
Cadmium	0.005 mg/l	0.091	0.26	0.0025	0.014	0.012	0.0087	0.067	0.068	0.052	0.025	0.04	0.007
Chromium	0.1 mg/l	0.056	0.049	ND	0.25	0.25	ND	0.127	0.43	0.194	0.143	0.73	0.123
Cobalt	mg/l	0.060	0.058	0.022	0.11	0.12	ND	0.067	0.205	0.104	0.085	0.37	0.097
Copper	1.3 mg/l	0.28	0.53	0.081	0.32	0.28	0.055	0.322	0.531	0.297	0.178	0.7	0.157
Lead	0.015 mg/l	0.045	0.048	0.033	0.092	0.081	0.03	0.073	0.24	0.1	0.066	0.26	0.072
Nickel	0.1 mg/l	0.11	0.13	0.046	0.33	0.16	0.042	0.172	0.476	0.242	0.17	0.72	0.13
Selenium	0.05 mg/l	ND	ND	0.027	0.0028	ND	ND	BDL	BDL	BDL	BDL	BDL	BDL
Silver Thallium	0.05 mg/l 0.002 mg/l	ND 0.047	ND 0.048	ND ND	ND ND	ND ND	ND ND	BDL BDL	BDL BDL	BDL BDL	0.001 BDL	BDL BDL	BDL BDL
Vanadium	0.002 mg/l	0.047	0.048	0.014	0.19	0.2	ND	0.118	0.367	0.179	0.135	0.58	0.106
Zinc	5 mg/l	0.28	0.56	0.085	0.66	0.62	0.11	0.367	1.08	0.173	0.419	1.9	0.36
Mercury	0.002 mg/l	ND	ND	ND	ND	ND	ND		BDL	BDL	BDL	NT	NT
Acetone	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Acrylonitrate	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Benzene	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Bromodichloromethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide Bromomethane	ug/l ug/l	NT NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT ND	NT ND	NT ND
Carbon tetrachloride	0.005 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	NT	NT	1.8	1.8	ND	1.8	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ug/l	NT	NT	1.9	ND	ND	2.0	2	5	ND	ND	ND	ND
Chloromethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
1,2-Dibromoethane	ug/l	NT	NT NT	ND	ND	ND	ND	ND	ND	ND	NT	NT NT	NT
Dibromomethane 1,2-Dichlorobenzene	ug/l 600 ug/l	NT NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT ND	NI ND	NT ND
1,4-Dichlorobenzene	75 ug/l	NT	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,4-Dichlo-2-butene	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
1,1 -Dichloroethane	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	70 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethylene	100 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene(1,1-Dichloroethene)	7 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 ug/l	NT NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/l ug/l	NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
1,1,2,2-Tetrachloroethane	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroflouromethane Vinyl chloride	ug/l 2 ug/l	NT NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	700 ug/l	NT	NT	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	2	ND
Toluene	1000 ug/l	NT	NT	ND	ND	ND ND	ND	ND	ND	ND ND	3	2	2
Xylenes	10000 ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	1	23	ND
Methyl butyl ketone(2-Hexanone)	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Methyl tert-butyl ether (MTBE)	ug/l	NT	NT	3.0	ND	ND	ND	ND	ND	ND	NT	NT	NT
Methyl ethyl ketone(2-Butanone)	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Methyl iodide	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
4-Methyl-2-pentanone	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
Styrene	ug/l	NT	NT	ND	ND	ND	ND	ND	ND	ND	NT	NT	NT
1,2,3-Trichloropropane Vinyl acetate	ug/l ug/l	NT NT	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT	NT	NT
viriyi acetate	ug/I	INI	INI	ND	ND	ND	ND	ND	טא	שוו			

ND = NOT DETECTED NT = PARAMETER NOT TESTED FOR No samples were collected during the March, June & December 1996, March & December 1997, March & December 1998, March, June & December 1999, March, June, September & December 2000, and March & June 2001 sampling rounds.

TABLE 1 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-12 Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>	Threshold Value	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP:17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT '10
Antimony	0.006 mg/L1	ND	ND	ND	0.001	ND	0.0210	ND	0.0010	0.0250	ND	0.0060	ND	ND	ND	0.0100	0.0600	ND	ND	ND																
Arsenic	0.010 mg/L ³	ND	ND	ND	0.01	ND	0.0050	ND	0.0090	ND	ND	ND	0.0060	ND	0.0300	ND	ND	ND																		
Barium Berylium	2 mg/L ¹ 0.004 mg/L ¹	0.02 ND	0.02 ND	0.023 ND	0.02 ND	0.0170 ND	0.0240 ND	0.0260 ND	0.0240 ND	0.0410 ND	0.0260 ND	0.0670 ND	0.0360	0.0200 ND	0.0260 ND	0.0250 ND	0.0190 ND	0.0600 ND	0.0160 ND	0.0210 ND	0.0120 ND	0.0140 ND	0.0130 ND	0.0150 ND	0.0080 ND	0.0130 ND	0.0180 ND	0.0170 ND	0.0160 ND	0.0160 ND	0.0100 ND	0.0280 ND	0.0130 ND	0.0113 ND	0.0151 ND ⁶	0.0156 ND
Cadmium	0.004 mg/L ¹	0.0004	ND	ND ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND																							
Chromium	0.1 mg/L ¹	ND.	ND	0.002	ND	ND	ND	0.0030	0.0010	0.0040	ND	0.0180		ND	0.0020	ND	ND	ND	ND	0.0020	0.0020	0.0020	0.0010	0.0020	ND	0.0020	ND	ND	ND	0.0010	ND	ND	ND	ND ⁴	ND ⁴	0.0014
Cobalt	0.73 mg/L ⁵	0.0005	ND	0.002	ND	ND	ND	0.0020	ND	0.0020	ND	0.0090	0.0080	ND	ND ⁶	0.0006	ND ⁶																			
Copper	1.3 mg/L1	ND	0.009	ND	ND	ND	ND	ND	ND	ND	ND	0.0200	0.0150	ND	0.0330	ND	ND	ND	ND	ND	0.0020	0.0030	0.0060	0.0020	0.0010	ND	ND	ND	ND	0.0010	ND	0.0100	0.0400	ND	0.0013	ND
Lead	0.015 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0150	0.0120	ND	ND	0.0020	ND	0.0020	0.0020	0.0030	0.0020	0.0020	0.0020	0.0010	0.0010	0.0020	0.0020	0.0020	ND	0.0020	ND	ND	ND	ND	ND	ND
Mercury	0.002 mg/L ¹	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁴	ND	ND
Nickel Selenium	0.1 mg/L ² 0.05 mg/L ¹	0.01 ND	0.024 ND	0.025 ND	0.025 ND	0.0200 ND	0.0170 ND	0.0140 ND	0.0090 ND	0.0140 ND	0.0070 ND	0.0220 ND	0.0130 ND	0.0060	0.0080 ND	0.0040 ND	0.0060 ND	0.0040 ND	0.0040	0.0060 ND	0.0040	0.0040	0.0040	0.0050 ND	0.0020 ND	0.0040 ND	0.0050 ND	0.0040 ND	0.0030 ND	0.0050	0.0030	0.0070 ND	0.0110	0.0034 ND	0.0028 ND	0.0037 ND
Silver	0.1 mg/L ^{2.3}	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND.	ND	0.0300	ND	ND	ND										
Thallum	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND																	
Tin	22 mg/L ⁵	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	0.0980	ND	0.1800	ND	ND	ND																			
Vanadium	0.26 mg/L ⁵	ND	ND	0.001	ND	ND	ND	0.0030	ND	0.0040	ND	0.0200	0.0200	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	0.0020	ND	0.0020	ND	ND	ND							
Zinc	2 mg/L ^{2,3}	ND	0.007	0.026	0.009	0.0070	0.0060	0.0130	0.0100	0.0220	ND	0.0500	0.0420	ND	ND	0.0050	0.0070	ND	0.0080	0.0100	ND	ND	0.0080	0.0070	0.0080	0.0160	ND	0.0170	0.0147	0.0151						
Acetone	610 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.3	ND	ND	ND								
Acrylonitrile Benzene	0.039 μg/L ³ 5 μg/L ³	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane	80 µg/L ²	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichioromethane (THM)	90 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6 µg/L ³	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorodibromomethane (THM)	80 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
1.2-Dibromo-3-chloropropane (DBCP		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,2-Dichloroethane	5 μg/L 5 μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1-Dichloroethylene	7 ug/L ¹	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.2-Dichloroethene	70 ug/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700 μg/L ¹	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
Methyl butyl ketone(2-Hexanone) Bromomethane	160 μg/L ³ 10 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND														
Chloromethane	30 ug/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone Styrene	μg/L 100 μg/L ³	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1,2-Tetrachloroethane	70 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 μg/L ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 μg/L ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 μg/L'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND																		
Trichloroflouromethane 1.2.3-Trichloropropane	2000 μg/L ² 40 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl acetate	410 μg/L ⁵	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 µg/L ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL UM-13 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold Value	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP 15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT 11	JUN '11	MAR '11	DEC '10
Antimony	0.006 mg/L1	ND	0.002	0.002	0.002	ND	0.0360	ND	0.0020	0.0080	ND	0.0110	ND	ND	ND	ND	ND	ND	ND	ND	0.0050	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0100	0.0200	ND	ND
Arsenic	0.010 mg/L1	0.0081	0.01	0.01	0.02	0.0070	ND	0.0050	0.0200	ND	ND	0.0100	ND	0.0190	0.0100	0.0110	0.0070	0.0040	0.0200	0.0070	ND	0.0140	0.0160	0.0070	0.0080	0.0070	ND	ND	0.0060	0.0050	0.0050	0.0090	ND	0.0096	0.0094
Barium	2 mg/L1	0.118	0.126	0.089	0.089	0.1150	0.0970	0.0460	0.0860	0.1080	0.0990	0.1830	0.0890	0.1700	0.0910	0.0870	0.0900	0.0890	0.1400	0.0870	0.0700	0.1180	0.0780	0.0650	0.0690	0.0750	0.0770	0.0760	0.0720	0.0760	0.0650	0.0760	0.0800	0.0912	0.0817
Beryllum	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.005 mg/L1	0.0004	0.004	0.003	0.004	0.0040	ND	0.0020	0.0030	0.0050	ND	0.0290	ND	0.0050	0.0040	0.0040	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	0.0020	ND	0.0004	0.0004
Chromium	0.1 mg/L ¹ 0.73 mg/L ⁶	0.0004	0.002	0.002	0.002	0.0020	0.0010	ND	0.0040	0.0030	ND 0.0140	0.0330	0.0050	ND 0.0150	0.0040	ND	ND 0.0140	ND	0.0090	ND 0.0110	0.0010	0.0050	ND 0.0100	ND 0.0090	ND 0.0130	ND 0.0120	ND ND	ND 0.0100	ND 0.0130	ND 0.0120	ND 0.0110	ND 0.0120	ND 0.0090	ND	ND" 0.0156
Cobalt Copper	1.3 mg/L ¹	0.0112	0.013 ND	ND.	0.011 ND	0.0130 ND	0.0120 ND	0.0070 ND	0.0120	0.0140 ND	U.U14U ND	0.0280	0.0130 ND	0.0150	0.0130 ND	0.0120	0.0140 ND	0.0160	0.0180	0.0110	0.0100	0.0120	0.0100	0.0090	0.0130	ND	ND ND	0.0100 ND	0.0060	0.0120	0.0110	0.0120	0.0090	0.0192	0.0156
Lead	0.015 mg/L ¹	0.0008	0.002	ND	ND	0.0020	ND	ND	0.0010	ND	0.0070	0.0350	0.0190	ND	ND	0.0020	0.0030	0.0030	0.0170	0.0030	0.0030	0.0080	0.0020	0.0030	0.0030	0.0020	0.0020	0.0020	ND	0.0020	ND	0.0040	0.0300	0.0028	ND
Mercury	0.013 mg/L	ND.	ND.	NT	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND.	ND	ND	ND	ND.	ND.	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND.	ND.	ND	ND ⁶
Nickel	0.1 mg/L ²	0.011	0.014	0.012	0.011	0.0120	0.0290	0.0060	0.0120	0.0350	0.0140	0.0465	0.0130	0.0130	0.0120	0.0120	0.0130	0.0130	0.0220	0.0110	0.0100	0.0120	0.0100	0.0090	0.0100	0.0100	0.0100	0.0100	0.0110	0.0100	0.0090	0.0110	0.0060	0.0141	0.0127
Selenium	0.05 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0390	ND	ND	ND	0.0800	0.0210	0.0590	0.0120		0.0700	0.0350	0.0400	ND	ND	0.0700	0.0640	0.0620	0.0710	0.0690	0.0100	ND	ND
Silver	0.1 mg/L ²³	ND	0.001	ND	ND	ND	ND	0.0020	ND	0.0020	ND	ND	0.0010	0.0020	0.0020	ND	0.0010	0.0010	ND	0.0020	ND	0.0020	ND	0.0030	0.0340	ND	ND								
Thallium	0.002 mg/L ¹	ND	ND	ND	ND	0.0003	0.0003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Tin	22 mg/L°	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	0.2800	0.1100	ND	0.0120	ND	ND	0.0010	ND	ND	ND	0.0170	0.0400	0.0090	0.0180	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND
Vanadium Zino	0.26 mg/L ³ 2 mg/L ²³	ND	0.008	0.004	ND	ND 0.0170	0.0020	ND 0.0070	ND 0.0200	ND 0.0170	0.0060	0.0390	0.0030	ND 0.0060	ND	ND	ND	ND	0.0130	0.0020	ND ND	0.0010	0.0040	ND	0.0020	ND 0.0100	ND	ND	ND	ND	ND 0.0050	ND 0.0090	0.0200	ND 0.0178	ND
Acetone Acetone	610 ugl. ⁵	0.005 ND	ND	0.01 ND	0.012 ND	ND	ND.	ND	0.0200 ND	0.0170 ND	ND ND	0.1300 ND	0.0130 ND	0.0060 ND	ND ND	0.0070 ND	ND ND	ND ND	0.0470 ND	ND ND	ND ND	0.0090 ND	ND ND	ND ND	ND.	ND	ND ND	ND ND	0.0230 ND	0.0050 ND	ND	0.0090 ND	ND ND	0.0178 ND	0.0092 ND
Acrylonitrile	0.039 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND
Bromochloromethane	80 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 µg£1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride Chlorobenzene	5 µg/L'	ND 5.9	ND 6.19	ND ND	ND 4.72	ND 5.40	ND ND	ND	ND 5.03	ND 6.8	ND ND	ND 5.5	ND 2.5	ND 6.6	ND 7.4	ND 6.3	ND 6.1	ND 7.4	ND 8.1	ND ND	ND 7.1	ND 7.2	ND 6.4	ND 2.2	ND 3.9	ND 6.8	ND 6.3	ND 1.6	ND 4.2	ND 6.7	ND 6.5	ND	ND 3.7	ND 6.2	ND 5.6
Chipropenage	100 μgL ¹	ND	6.19 ND	ND ND	4.72 ND	ND	ND	5.23 ND	ND.	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	6.0 ND	ND	ND	ND
Chloroform	80 µg/L1	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane (DBCP)	0.2 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 µg/L1	ND	ND	ND	ND	ND	ND	1.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
1,4-Dichlorobenzene	75 µg/L1	ND	1.31	ND	ND	ND	ND	1.11	ND	1.4	1.2	1.3	ND	ND	1.4	ND	ND	ND	ND	1.0	1.2	ND	ND	1.2	ND	1.4	1.0	ND"	1.1						
trans-1,4-Dichloro-2-butene 1,1-Dichloroethane	μgL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane 1,2-Dichloroethane	5 μգ/և 5 μգ/և	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND
1,1-Dichloroethylene	7 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.2-Dichloroethene	70 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylberizene	700 µg/L1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Methyl butyl ketone(2-Hexanone) Bromomethane	160 μgL ³ 10 μgL ²	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND
Chipromethane	30 µg/L ²	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Dibromomethane	61 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	μgt	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μgL	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND							
Styrene	100 μgL ¹ 70 μgL ²	ND ND	ND	ND ND	ND ND	ND	ND	ND ND		ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	70 μg/L 0.3 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene(PCE)	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroflouromethane	2000 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	40 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	410 μgt.° 2 μgt.¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyi chionide Xvlenes	10000 µg/L1	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND
Methyl tert-butyl ether (MTBE)	20 - 40 µg/L ⁴	3.4	3.99	ND	3.26	ND	ND	3.70	3.53	6.1	ND	3.6	2.6	4.1	4.9	3.2	5.2	4.5	2.9	ND	4.2	5.0	5.4	3.3	3.3	5.0	4.5	2.8	3.8	4.5	2.8	4.7	3.2	7.9	3.8
		eded MCL																									-	-							

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-14 Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>	Threshold Value	MAR '11	DEC 1	8 SEP 1	8 JUN 18	MAR '11	B DEC 17	SEP 1	7 JUN'17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP:15	JUN 15	MAR 15	DEC '14	SEP '14	4 JUN'14	MAR '14	DEC '13	SEP '13	JUN '13	MAR '13	DEC '12	SEP 12	2 JUN '12	MAR 12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT
Antimony	0.006 mg/L ¹	0.0001	0.005	NT	ND	ND	0.0350	NT	0.0050	0.0410	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	0.0110	0.0170	ND	ND	N'
vrsenic	0.010 mg/L ¹	0.0018	ND	NT	0.01	ND	0.0030	NT	0.0200	0.0120	ND	NT	ND	0.0070	0.0050	0.0050	NT	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	NT	ND	ND	ND	0.0060	ND	0.0074	ND	N'
Barium	2 mg/L1	0.202 ND	0.21 ND	NT NT	0.155 ND	0.2240 ND		NT	0.2400	0.2490 ND	0.2290	NT	0.1380	0.1750	0.1980 ND	0.1140	NT	0.2020	0.0910	NT NT	0.1570 ND	0.1840 ND	0.0790	NT NT	0.1440 ND	0.1760 ND	0.1370	NT	0.1750 ND	0.1770 ND	0.1470		0.2100	0.2700 ND	0.2030	N.
Seryllum Cadmium	0.004 mg/L ¹	ND ND	0.0020		0.006	0.0050	ND ND	NT NT	0.0030	0.0060	ND ND	NT NT	0.0010 ND	0.0010	0.0080	0.0010	NT NT	ND ND	ND ND	NT	0.0050	0.0010	0.0010 ND	NT	ND ND	0.0020	ND ND	NT NT	ND ND	0.0040	ND 0.0030	ND 0.0030	ND ND	ND ⁶	0.0010 ND ⁶	N.
hromium	0.1 mg/L1	0.0007	ND	NT	0.000	0.0060		NT	0.0010	0.0020	ND	NT	0.0110	0.0070	0.0030	0.0000	NT	0.0050	0.0050	NT	0.0040	0.0010	0.0080	NT	ND	0.0020	ND	NT	ND	ND	ND	ND	ND	ND	0.0065	N
Cobalt	0.73 mg/L ⁵	0.0059	0.011	NT	0.006	0.0140	0.0090	NT	0.0140	0.0130	0.0360	NT	0.0100	0.0100	0.0100	0.0120	NT	0.0170	0.0120	NT	0.0080	0.0150	0.0120	NT	0.0080	0.0160	0.0370	NT	0.0140	0.0100	0.0100	0.0160	0.0090	0.0457	0.0261	N'
Copper	1.3 mg/L1	ND	0.007	NT	ND	0.0090		NT	0.0100	ND	0.0200	NT	0.0010	0.0010	ND	0.0170	NT	0.0100	0.0090	NT	0.0070	0.0050	0.0200	NT	0.0030	0.0080	0.0100	NT	ND	ND	0.0010		ND	0.0049	0.0140	N'
ead	0.015 mg/L ¹	0.001	ND	NT	ND	0.0060	ND ND	NT	0.0170	ND	ND	NT	0.0160	0.0070	ND	0.0090	NT	0.0050	0.0050	NT	0.0040	0.0040	0.0070	NT	0.0020	0.0050	0.0030	NT	0.0020	ND	0.0090	0.0020	ND	ND	0.0039	N
Aercury Aickel	0.002 mg/L ¹ 0.1 mg/L ²	ND 0.011	ND 0.019	NT NT	ND 0.012	ND 0.0220	ND 0.0320	NT NT	ND 0.0220	ND 0.0470	ND 0.0400	NT NT	ND 0.0160	ND 0.0160	ND 0.0170	ND 0.0200	NT NT	ND 0.0270	ND 0.0180	NT NT	ND 0.0150	ND 0.0230	ND 0.0200	NT NT	ND 0.0120	ND 0.0200	ND 0.0350	NT NT	ND 0.0190	ND 0.0170	ND 0.0150	ND 0.0180	ND 0.0180	ND 0.0460	ND 0.0407	N N
Selenium	0.05 mg/L1	ND	ND.	NT	ND	ND.	ND	NT	ND	ND	ND.	NT	ND.	ND	ND	ND	NT	0.0270	0.0140	NT	ND	ND	0.0260	NT	ND	ND	ND	NT	0.0100	0.0310	0.0130		ND	ND	ND	N
ilver	0.1 mg/L ^{2,3}	0.0002	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	0.0040	NT	0.0020	ND	NT	0.0020	0.0020	ND	NT	ND	0.0020	ND	NT	ND	0.0040	ND	0.0050	ND	ND	ND	N
hallium	0.002 ma/L ¹	ND	ND	NT	ND	0.0003		NT	ND	ND	ND	NT	ND	ND	ND	0.0010	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	0.0010	ND	ND	ND	ND	N
in	22 mg/L ⁵	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	0.0350	ND	0.0070	0.0010	NT	ND	ND	NT	ND	0.0220	0.0180	NT	0.0310	ND	ND	NT	ND	ND	ND	ND	ND	ND ⁶	ND	N
anadium Inc	0.26 mg/L ⁵ 2 mg/L ^{2,3}	0.0007	0.004	NT NT	ND 0.031	0.0070		NT NT	0.0070	ND 0.0230	ND 0.0300	NT NT	0.0170	ND 0.0170	ND 0.0140	0.0140	NT NT	0.0080	0.0050	NT NT	0.0050	0.0020	0.0080	NT NT	0.0030	0.0060	ND 0.0210	NT NT	ND 0.0160	ND 0.0070	ND 0.0070	ND 0.0270	0.0290 ND	ND 0.0453	0.0063	N N
cetone	610 µg/L ⁵	ND	ND	NT	ND	ND	ND	NT	ND.	6.9	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	6.4	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	N
crylonitrile	0.039 µgL ⁵	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	N
enzene	5 μg/L ¹	2.1	2.28	NT	2.77	ND	ND	NT	3.2	4.1	ND	NT	2.7	3.1	3.9	2.0	NT	3.5	ND	NT	3.3	3.6	ND	NT	2.9	4.3	1.9	NT	1.8	3.5	3.6	4.1	2.1	3.7	1.7	Þ
romochloromethane	80 ual ²	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	- 1
romodichloromethane (THM)	90 μg/L¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND	ND ND	ND ND	NT NT	ND ND	ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
romoform arbon disulfide	80 μg/L ³ 1000 μg/L ⁵	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
arbon disumae arbon tetrachloride	5 µg/L	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND	ND	NT	ND ND	ND ND	ND ND	ND ND	NT	ND ND	ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	- 1
hloroberizene	100 µg/L1	10.8	11.38	NT	13.3	10.8	ND	NT	13.42	15.6	ND	NT	12.5	13.5	15.4	10.7	NT	16.7	5.3	NT	15.7	15.7	3.2	NT	11.3	19.1	8.0	NT	7.0	14.3	14.6	16.5	7.1	15.3	6.1	- 1
hioroethane	4.6 μg/L ⁵	ND	ND	NT	ND	ND	ND	NT	2.27	ND	ND	NT	3.3	ND	2.0	1.5	NT	ND	ND	NT	ND	ND	ND	NT	ND	2.5	ND	NT	ND	1.4	2.4	ND	1.6	1.3	ND	
hloroform	80 uaL1	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	- 1
hlorodibromomethane (THM) 2-Dibromo-3-chloropropane (DBCP	80 μg/L ¹ 0.2 μg/L ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- 1
2-Dibromo-3-chibropropane (DBCP 2-Dibromoethane (EDB)	0.2 ual. 0.05 µg/L ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
2-Dipromoetnane (EDB) 2-Dipromoetnane	600 µg/L	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	
4-Dichlorobenzene	75 µg/L1	2.1	2.38	NT	2.62	ND	ND	NT	ND	ND	ND	NT	1.8	ND	ND	2.2	NT	3.3	ND	NT	3.4	ND	ND	NT	2.2	2.9	1.8	NT	1.4	2.7	2.2	3.2	1.8	2.7	1.9	
ns-1,4-Dichloro-2-butene	μgL	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
1-Dichloroethane	5 μg/L	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
2-Dichloroethane	5 μg/L	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	- 1
1-Dichloroethylene s-1.2-Dichloroethene	7 μαL ¹ 70 μg/L ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
ans-1.2-Dichloroethene	100 µg/L	ND	ND	NT	ND ND	ND	ND ND	NT	ND	ND	ND	NT	ND ND	ND	ND	ND ND	NT	ND	ND ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	- 1
2-Dichloropropane	5 μg/L1	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	i
is-1,3-Dichloropropene	μgL	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	- 1
ans-1,3-Dichloropropene	μg/L	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
thylbenzene	700 µg/L	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
fethyl butyl ketone(2-Hexanone) romomethane	160 ual.5 10 ual.2	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
hloromethane	30 µg/L	ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND	NT	ND ND	ND	ND	ND ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	,
bromomethane	61 µg/L ⁵	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	i
lethylene chloride	5 μg/L ¹	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
lethyl ethyl ketone(2-Butanone)	4000 μg/L ²	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
lethyl iodide	μgL	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
Methyl-2-pentanone vrene	μαL 100 μgL ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
yrene 1.1.2-Tetrachloroethane	70 μg/L ²	ND	ND	NT	ND ND	ND	ND ND	NT	ND ND	ND	ND	NT	ND	ND	ND	ND ND	NT	ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
1.2.2-Tetrachloroethane	0.3 µg/L ²	ND	ND	NT	ND ND	ND	ND ND	NT	ND	ND	ND	NT	ND ND	ND	ND	ND ND	NT	ND	ND ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	i
trachloroethylene(PCE)	5 μg/L ¹	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
luene	1000 µg/L ¹	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
1,1-Trichloroethane	200 μg/L ¹	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	
1,2-Trichloroethane	5 μg/L ¹	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	
ichloroethylene(TCE) ichloroflouromethane	5 μg/L ¹ 2000 μg/L ²	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
2,3-Trichloropropane	2000 HαL 40 μg/L ²	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND	NT	ND ND	ND ND	ND ND	ND ND	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	- 1
nyl acetate	410 μgL ⁵	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	i
nyl chloride	2 μg/L1	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	-
/lenes	10000 μg/L ¹	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	-
ethyl tert-butyl ether (MTBE)	20 - 40 µg/L ⁴	5.0	7.97	NT	6.23	9.4	ND	NT	7.08	16.5	ND	NT	6.7	7.7	12.3	6.9	NT	11.2	1.7	NT	6.6	14.8	4.3	NT	6.9	11.9	11.0	NT	7.5	8.4	6.6	12.4	7.0	16.3	12.3	
Threshold value given is the Pre Constituent concentration was	wimum Contamin itime health adviss condary Drinking inking Water Advi eliminary Remedia reported above its	ory as pro Water Re sory as pr al Goal (P laborator	vided in t gulation ovided in RG) for to y method	the USER (SDWR) the USE ap water, d detection	A 2004 E as provide PA 2004 I as provid n limit, bu	dition of t ad in the l Edition of ed in the at lower th	the Drinkin USEPA 20 the Drinki October 20 nan its labo	g Water 04 Editi ng Water 002 USI oratory n	r Standards on of the D er Standard EPA Region eporting lim	and Heal rinking W is and Heal of 9 PRGs out and his	Ith Advisor ater Star alth Advis Table 20 torical re	ories idards ar sories 102 Upda porting li	d Health	Advisories	:																					
Threshold value given is the Dri Threshold value given is the Pri Constituent concentration was However, the reporting limit this constituents with concentration	eliminary Remedia reported above its s round was signifi s lower than histo	al Goal (P laborator icantly hig rical repo	RG) for to by method gher than rting limit	ap water, d detection previous ts were re	as provide in limit, but reporting eported as	ed in the it lower th limits. To non-dete	October 20 nan its labo herefore, to	002 USI oratory r	EPA Region eporting lim	n 9 PRGs nit and his	Table 20 torical re	02 Upda porting li																								

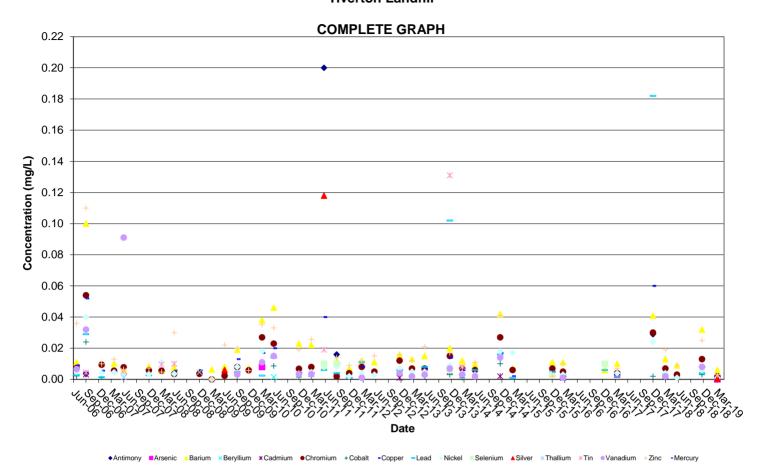
No threshold value has been provided for parameters not identified in the sources listed above NT = Not Tested due to dry conditions at well.

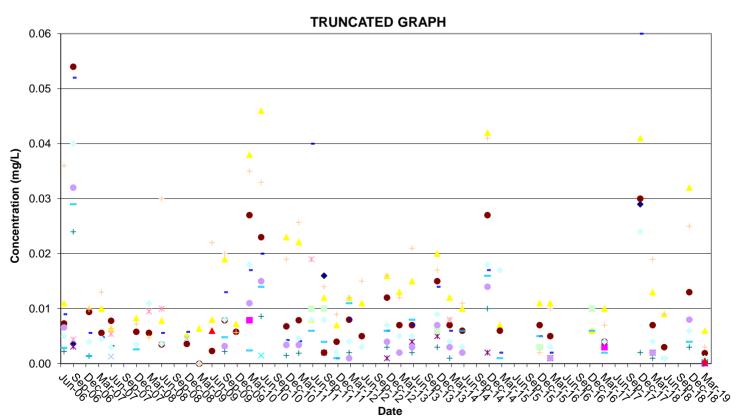
TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-15 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold Value	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT '10
Antimony	0.006 mg/L1	ND	0.0040	0.0040	ND	ND	0.0300	ND	0.0020	0.0340	ND	ND	ND	ND	0.0060	0.0070	0.0060	0.0400	ND	ND	ND	ND														
Arsenic	0.010 mg/L1	0.0352	0.02	0.03	0.03	0.0200	0.0200	0.0300	0.0300	ND	ND	0.0700	0.0130	0.0320	0.0170	ND	ND	0.0160		0.0350	ND	ND	0.0050	0.0280	0.0130	0.0180	0.0040	0.0300	ND	ND	0.0110	ND	ND	0.0023	0.0338	0.0362
Barium	2 mg/L1	0.158	0.212	0.084	0.096	0.1280	0.1240	0.0850	0.0890	0.1230	0.1560	0.3100	0.0600	0.1130	0.1840	0.1390	0.2230	0.1260	0.1350	0.1060	0.1810	0.1180	0.1340	0.0750	0.1510	0.1550	0.1340	0.1010	0.2360	0.2350	0.1620	0.1930	ND	0.1890	0.1260	0.1110
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND		0.0050	ND	ND	ND ⁶									
Cadmium	0.005 ma/L ¹	ND	800.0	0.007	0.010	0.0090	ND	0.0100	0.0050	0.0100	0.0050	0.0460	ND	0.0100	0.0080	0.0070	ND	ND	ND	ND	0.0100	0.0010	ND	0.0010	ND	0.0040	ND	0.0020	ND	0.0060	0.0010	0.0040	ND	ND	ND ⁶	ND ⁶
Chromium	0.1 mg/L ¹	0.0007	ND	ND	ND	ND	ND	0.0030	ND	0.0020	ND	0.1180	0.0020	0.0010	0.0050	0.0020	0.0010	ND		0.0030	0.0030	0.0030	ND	ND	ND	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND		0.0018
Cobalt	0.73 ma/L ³	0.0126	800.0	0.014	0.012	0.0100	0.0090	0.0180	0.0130	0.0040	ND	0.2300	0.0080	0.0180	0.0070	0.0040	0.0020	0.0120	ND	0.0190	0.0020	ND	0.0010	0.0140	0.0100	0.0060	0.0020	0.0170	0.0030	0.0040	0.0090	0.0020	ND	0.0039	0.0185	0.0244
Copper	1.3 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1400	ND	ND	ND	ND ND	ND	0.0020	ND	ND	0.0080	0.0040	0.0240	0.0050	0.0060	0.0060	ND	ND	ND	0.0030	0.0040	0.0100	0.2400	ND		0.0059
Lead	0.015 mg/L ³	0.0003	0.0030 ND	0.0020	ND	0.0020	ND	ND	0.0020	ND	0.0050	0.1350 ND	0.0140	ND	ND		0.0040 ND			0.0110	0.0040	0.0020	0.0030	0.0020	0.0050	0.0050	0.0030	0.0050	0.0020	0.0020	0.0010 ND	0.0030	ND	ND		0.0025
Mercury Nickel	0.002 mg/L ¹ 0.1 mg/L ²	ND 0.025	0.017	ND 0.029	ND 0.023	ND 0.0200	ND 0.0510	ND 0.0350	ND 0.0240	ND 0.0520	ND 0.0110	0.6610	ND 0.0140	ND 0.0290	ND 0.0170	ND 0.0100	0.0110	ND 0.0180	ND n nnan	ND 0.0330	ND 0.0120	ND 0.0070	ND 0.0110	ND 0.0230	ND 0.0190	ND 0.0150	ND	ND 0.0270	ND 0.0110	ND 0.0130	0.0160	ND 0.0090	ND 0.0140	ND 0.0086	ND 0.0374	ND 0.0396
Selenium	0.05 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	0.0100	ND	ND	ND	ND	0.0110	ND	ND	ND	ND	0.0270	0.0110	0.0130	0.0110	0.0190	0.0400	ND	ND ⁶	ND
Silver	0.1 mg/L ^{2.3}	0.0001	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0220	0.0020	0.0150	0.0030	0.0030	0.0160	0.0020	0.0030	0.0030	ND	0.0100	ND	0.0180	ND	0.0150	ND	ND	ND ⁶	ND ⁶
Thallium	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
Tin	22 mg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0600	ND	ND	0.0470	ND	ND	ND	ND	ND	ND	0.0270	0.0780	0.0210	0.0400	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND ⁶	ND ⁶
Vanadium	0.26 mg/L ⁵	0.0010	0.0150	0.0110	ND	0.0060	0.0040	0.0110	ND	ND	0.0150	0.1560	0.0050	ND	ND	0.0020	ND	0.0040	0.0050	0.0060	0.0040	0.0030	0.0090	0.0030	0.0050	0.0040	0.0040	0.0030	0.0030	0.0020	0.0020	ND	0.0160	ND	0.0012	0.0023
Zinc	2 mg/L ^{2,3}	0.0030	0.0150	0.0150	0.032	0.0210	0.0100	0.0300	0.0200	0.0140	ND	0.9700	ND	0.0120	0.0150	0.0080	ND	0.0150	0.0200	ND	0.0280	0.0090	0.0120	0.0060	0.0170	ND	0.0181	0.0147	0.0227							
Acetone	610 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	6.7	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	18.6	ND	ND	ND	ND	ND	ND	ND	6.8	ND	ND
Acrylonitrile	0.039 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5 μg/L ¹	1.5	1.76	ND	1.67	ND	ND	3.59	2.83	ND	ND	3.4	3.2	2.1	3.2	1.7	2.0	2.8	2.8	3.6	2.2	2.1	2.8	3.4	2.7	2.8	2.5	3.4	3.1	2.7	3.2	3.5	2.1	1.9	3.3	3.5
Bromochloromethane	80 ua/L²	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
Bromodichloromethane (THM)	90 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 µg/L ⁵	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND
Carbon tetrachloride	5 μg/L ³ 100 μg/L ¹	ND	15.49	ND 14.0	ND 12.72	ND 17	ND 15.2	ND 18.19	21.26	17.4	21.5	16.0	ND 16.8	ND 17.7	ND 18.3	21.0	21.1		26.9	ND 19.0	ND 27.0	ND 25.0	ND 32.5	ND	ND	20 D	ND 29.0	ND 15.5	ND 12.4	ND 16.9			ND 11.8	ND 23.1	ND 19.8	ND 16.9
Chloroberizene Chloroethane	4.6 μg/L ⁵	13.2 ND	15.49 ND	ND	12.72 ND	ND	ND	18.19 ND	ND	ND	ND ND	ND	2.8	ND	1.9	ND ND	ND	19.7 ND	26.9 ND	ND	ND	ND	ND	18.9 ND	14.3 ND	ND	ND	ND	ND	ND	15.8	25.0 ND	ND	23.1 ND	19.8 ND	2.9
Chloroform	4.0 µg/L	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 ug/L1	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dibromo-3-chloropropane (DBC)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	1.0	1.3	ND	ND	ND	1.2	ND	ND	ND						
1,4-Dichlorobenzene	75 µg/L1	2.1	3.06	ND	ND	ND	ND	2.51	ND	1.6	ND	ND	2.1	ND	ND	3.4	2.9	3.0	ND	ND	3.4	ND	ND	2.1	2.3	2.6	3.2	1.9	1.9	2.3	1.5	3.1	2.1	2.9	2.4	2.4
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 ua/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 μg/L¹	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	μg/L μg/L	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND								
Ethybenzene	700 ug/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 ug/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	30 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	ua/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 ua/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 μg/L ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 μg/L1	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND																		
Trichloroethylene(TCE) Trichloroflouromethane	5 μg/L ³ 2000 μg/L ²	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
1,2,3-Trichloropropane	2000 iidiL 40 μg/L ²	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
Vinyl acetate	410 µg/L ⁵	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 ug/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	3.3	ND	ND	2.2	5.4	ND	ND	3.1	ND	6.1	2.0	3.9	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	7.5	3.69	7.0	6.61	ND	6.3	7.52	7.69	8.5	ND	7.9	7.9	6.8	7.8	6.7	12.2	7.1	4.2	6.0	9.4	5.4	7.7	8.3	10.3	6.1	3.9	8.8	9.5	9.5	5.5	7.5	7.1	7.9	6.1	7.6

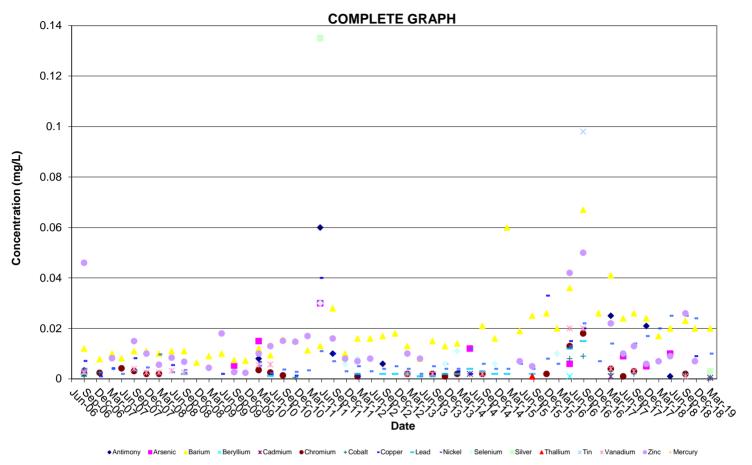
No threshold value has been provided for parameters not identified in the sources listed above

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-16 Concentration (Expressed in same units as Threshold Value)

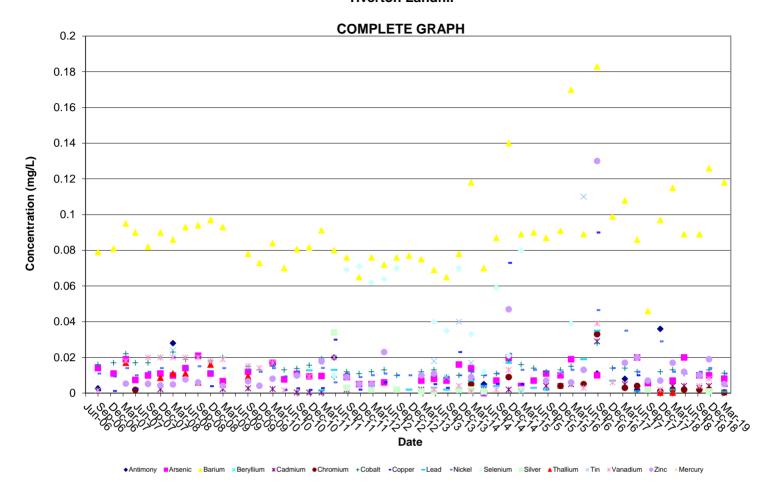

<u>Parameter</u>		shold lue	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	NOV '17
Antimony	0.006	mg/L1	ND	ND	ND	0.002	ND	ND
Arsenic		mg/L1	ND	ND	ND	0.01	ND	ND
Barium		mg/L1	0.014	0.017	0.027	0.011	0.0190	0.1000
Beryllium	0.004	mg/L1	0.0001	ND	ND	ND	ND	ND ND
Cadmium	0.005	ma/L1 mg/L1	0.0003 ND	0.003	0.003	0.004	0.0060	0.0050
Coromium		mg/L ⁵	0.0008	0.003	0.003	0.004	0.0060	0.0050
Copper		mg/L1	ND.	ND.	ND	ND.	ND.	ND.
Lead	0.015		ND	ND	ND	ND	ND	ND
Mercury	0.002	mg/L1	ND	ND	NT	ND	ND	ND
Nickel	0.1	mg/L ²	0.002	0.013	0.01	0.009	0.0100	0.0100
Selenium		mg/L1	ND	0.009	0.003	ND	0.0100	0.0050
Silver	0.1	mg/L ^{2,3}	0.0001	ND	ND	ND	ND	ND
Thallum Tin	0.002	ma/L ¹ mg/L ⁵	ND ND	ND ND	ND NT	ND ND	0.0003 ND	ND ND
Vanadium	0.26	mg/L ⁵	ND ND	ND	ND ND	ND	ND	ND ND
Zinc		mg/L ^{2,3}	0.004	0.025	0.019	0.022	0.024	0.0210
Acetone	610	μg/L ⁵	ND	ND	ND	ND	ND	ND
Acrylonitrile	0.039	μg/L ^s	ND	ND	ND	ND	ND	ND
Benzene	5	μg/L ¹	ND	ND	ND	ND	ND	ND
Bromochloromethane	80	ua/L²	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90	μg/L1	ND	ND	ND	ND	ND	ND
Bromoform		μg/L1	ND	ND	ND	ND	ND	ND
Carbon disuffide Carbon tetrachloride	1000	μg/L ⁵ μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon tetracrionde Chlorobenzene	100	μg/L ¹	ND ND	ND	ND	ND	ND	ND ND
Chloroethane	46	μg/L ⁵	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Chloroform	80	ug/L1	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80	μg/L ¹	ND	ND	ND	ND	ND	ND
1.2-Dibromo-3-chloropropane (DBCP	0.2	ug/L1	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)		μg/L1	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600	μg/L ¹	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75	μg/L1 μg/L	ND ND	ND	ND	ND	ND	ND ND
trans-1,4-Dichloro-2-butene 1.1-Dichloroethane		μg/L μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.2-Dichloroethane		μg/L	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7	μg/L ¹	ND	ND	ND	ND	ND	ND
cis-1.2-Dichloroethene	70	μg/L ³	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	μg/L¹	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	μg/L'	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene		μg/L	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene		μg/L μg/L	ND ND	ND	ND	ND	ND	ND ND
Ethylbenzene Methyl butyl ketone(2-Hexanone)		μg/L ⁶	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	100	μg/L ²	ND	ND	ND	ND	ND	ND
Chloromethane	30	μg/L ²	ND	ND	ND	ND	ND	ND
Dibromomethane	61	μg/L ^b	ND	ND	ND	ND	ND	ND
Methylene chloride		μg/L ¹	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000	μg/L²	ND	ND	ND	ND	ND	ND
Methyl iodide		μg/L	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		μg/L	ND ND	ND ND	ND ND	ND ND	ND	ND
Styrene 1.1.1.2-Tetrachloroethane		μg/L ¹ ug/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1,2-1 etrachioroethane 1,1,2,2-Tetrachioroethane		μα/L ²	ND	ND ND	ND	ND	ND	ND ND
Tetrachloroethylene(PCE)		μg/L ¹	ND	ND	ND	ND	ND	ND
Tokene	1000		ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane		μg/L ¹	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	μg/L1	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)		μg/L ¹	ND	ND	ND	ND	ND	ND
Trichloroflouromethane	2000	ua/L²	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	40	μg/L ²	ND	ND	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	410	μg/L ⁵ μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride Xvlenes	10000		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl tert-butyl ether (MTBE)	20 - 40		4.67	3.77	3.42	6.53	7.8	4.6
many are any area (miles)	20.40		eded MCI					

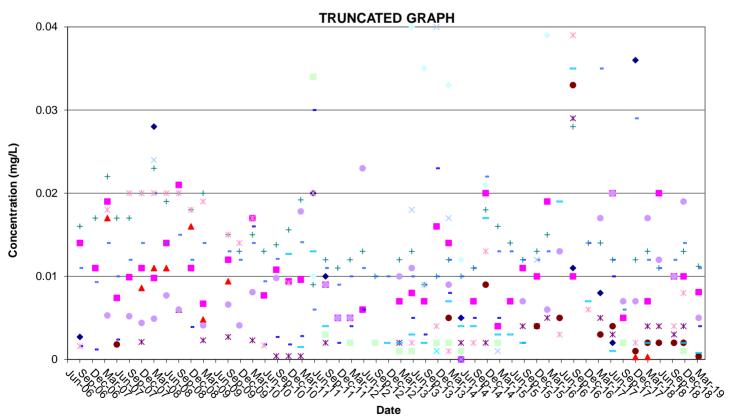

- Against Market Art Delice Committee Committee

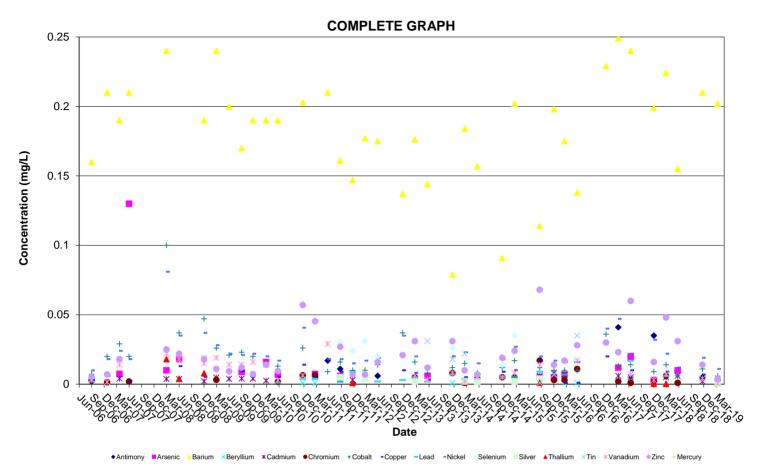
No threshold value has been provided for parameters not identified in the sources listed above

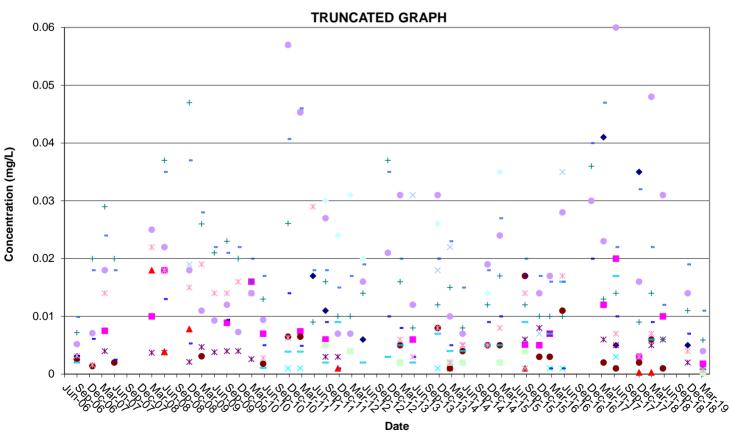

<u>ATTACHMENT NO. 3</u> HISTORICAL DETECTED METALS GRAPHS

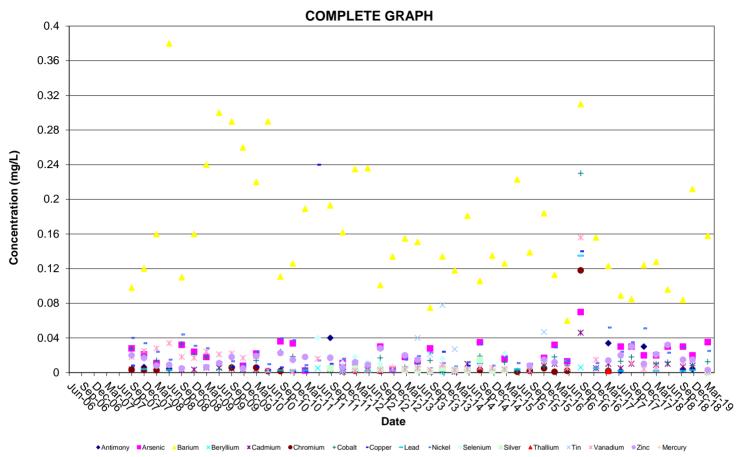
Detected Appendix A Metals in OW-9 Tiverton Landfill

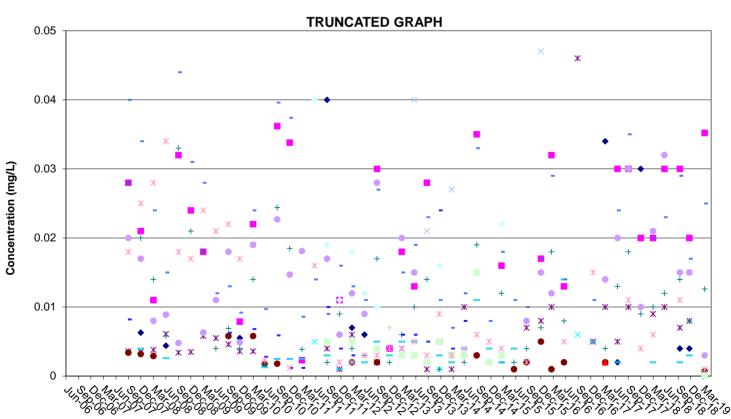


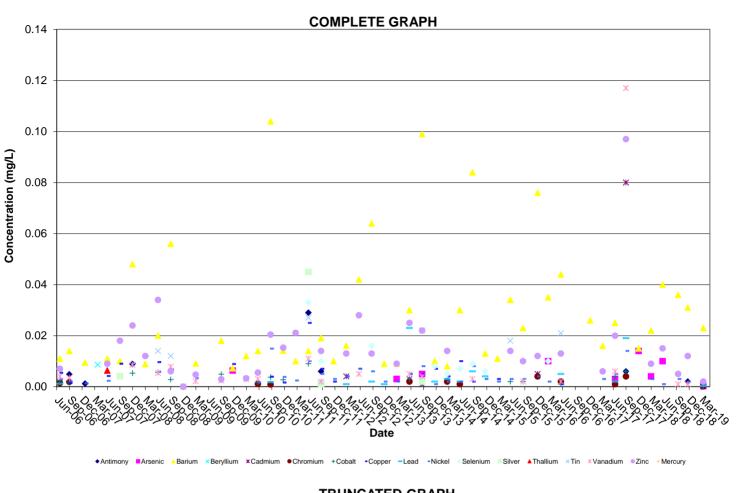

Detected Appendix A Metals in OW-12 Tiverton Landfill

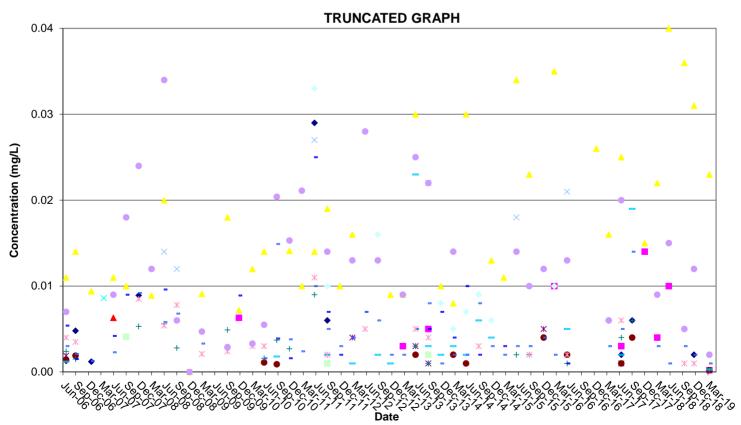


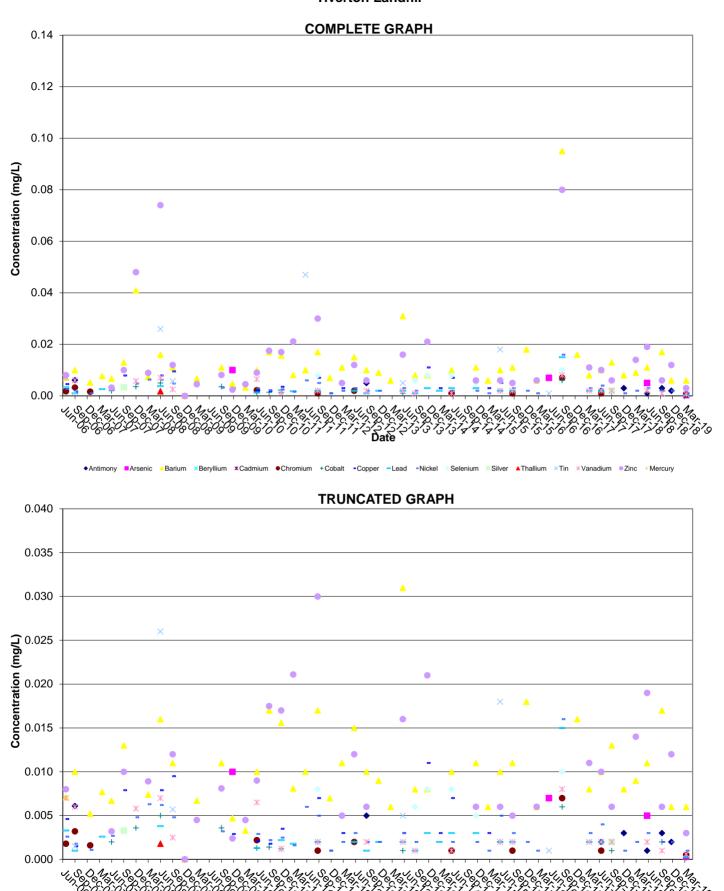

Detected Appendix A Metals in OW-13 Tiverton Landfill



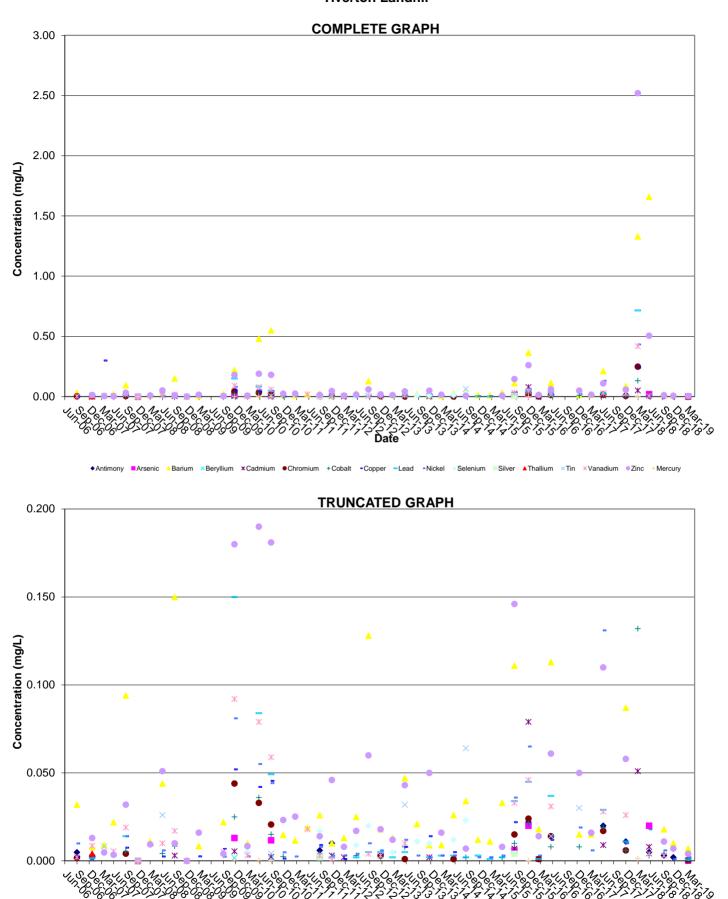

Detected Appendix A Metals in OW-14 Tiverton Landfill


Detected Appendix A Metals in OW-15 Tiverton Landfill




Date

Detected Appendix A Metals at Surface Water Sampling Location SW-1 Tiverton Landfill



Detected Appendix A Metals at Surface Water Sampling Location SW-2 Tiverton Landfill

Detected Appendix A Metals at Surface Water Sampling Location SW-3 Tiverton Landfill

<u>ATTACHMENT NO. 4</u> TOLERANCE INTERVAL STATISTICAL EVALUATION

TABLE 3 SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON MAR 2019 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

OW-16

ND

ND

0.014 0.0001

0.0003

ND

0.0008

ND

ND

0.002

ND

0.0001

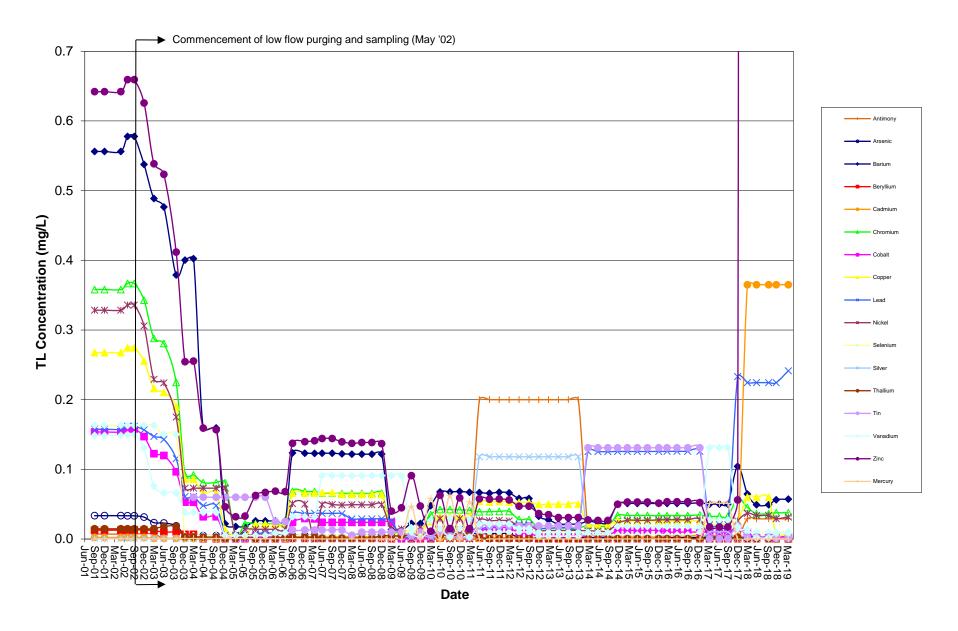
ND

ND

ND

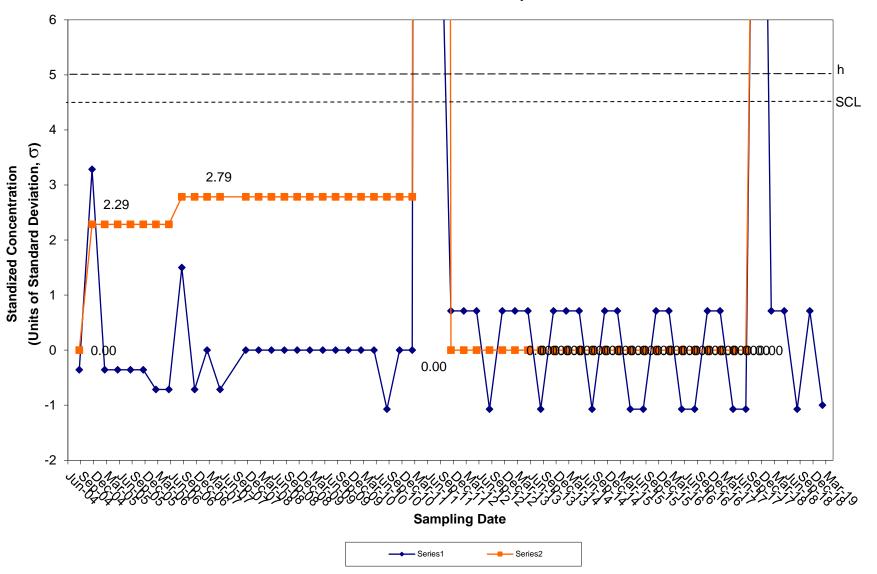
0.004

							,			
		0	W-9		Background W	/ell		Compliance we	ls	
			ce Limit *	Threshold						
	<u>Parameter</u>	TL=A\	/G+K*S	Value	OW-9	OW-7	OW-12	OW-13	OW-14	OW-15
METALS	Antimony	0.0290	mg/L	0.006 mg/L ¹	0.0001	ND	ND	ND	0.0001	ND
	Arsenic	0.0030	mg/L	0.010 mg/L		0.0002	ND	0.0081	0.0018	0.0352
	Barium	0.0572	mg/L	2 mg/L ¹		0.034	0.02	0.118	0.202	0.158
	Beryllium	0.0003	mg/L	0.004 mg/L ¹ 0.005 mg/L ¹		ND	ND 0.0004	ND 0.0004	ND	ND
	Cadmium Chromium	0.3650 0.0378	mg/L mg/L	0.005 mg/L 0.1 mg/L ¹		0.0007 0.0011	0.0004 ND	0.0004 0.0004	ND 0.0007	ND 0.0007
	Cobalt	0.0376	mg/L	0.73 mg/L ^t		0.0090	0.0005	0.0004	0.0059	0.0007
	Copper	0.0030	mg/L	1.3 mg/L ¹		0.0090	0.0003 ND	0.004	0.0039 ND	0.0120 ND
	Lead	0.2414	mg/L	0.015 mg/L ¹		0.002	ND	0.0008	0.0010	0.0003
	Mercury	0.0001	mg/L	0.002 mg/L ¹		0.0013 ND	ND	ND	ND	0.0003 ND
	Nickel	0.0315	mg/L	0.1 mg/L ²		0.011	0.01	0.011	0.011	0.025
	Selenium	0.0100	mg/L	0.05 mg/L ¹		ND	ND	ND	ND	ND
	Silver	0.0005	mg/L	0.1 mg/L ²		0.0002	0.003	ND	0.0002	0.0001
	Thallium	0.0001	mg/L	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND
	Tin	0.0010	mg/L	22 mg/L ⁵	ND	ND	ND	ND	ND	ND
	Vanadium	0.0080	mg/L	0.26 mg/L ⁵		0.0013	ND	ND	0.0007	0.0010
	Zinc	14.7679	mg/L	2 - 5 mg/L ²		0.006	ND	0.005	0.004	0.003
VOC'S	Acetone			610 μg/L ⁵						
	Acrylonitrile			0.039 μg/L ⁵	•					
	Benzene			5 μg/L¹	•					
	Bromochloromethane			80 μg/L ²						
	Bromodichloromethane (THM)			90 μg/L ¹						
	Bromoform			80 μg/L¹						
	Carbon disulfide			1000 μg/L ^b	•					
	Carbon tetrachloride			5 μg/L¹						
	Chlorobenzene			100 μg/L ¹	,					
	Chloroethane			4.6 μg/L ^s 80 μg/L ^s						
	Chloroform			80 μg/L 80 μg/L¹						
	Chlorodibromomethane (THM) 1,2-Dibromo-3-chloropropane (DBCP)			80 μg/L 0.2 μg/L¹						
	1,2-Dibromoethane (EDB)			0.2 μg/L 0.05 μg/L ¹						
	1,2-Dichlorobenzene			600 μg/L						
	1,4-Dichlorobenzene			75 μg/L						
	trans-1,4-Dichloro-2-butene			μg/L						
	1,1 -Dichloroethane			5 μg/L						
	1,2-Dichloroethane			5 μg/L ¹						
	1,1-Dichloroethylene			7 μg/L¹						
	cis-1,2-Dichloroethene			70 μg/L ¹						
	trans-1,2-Dichloroethene			100 μg/L ¹						
	1,2-Dichloropropane			5 μg/L¹						
	cis-1,3-Dichloropropene			μ g/L						
	trans-1,3-Dichloropropene			μ g/L						
	Ethylbenzene			700 μg/L¹						
	Methyl butyl ketone(2-Hexanone)			160 μg/L ⁵						
	Bromomethane			10 μg/L ²						
	Chloromethane			30 μg/L ²						
	Dibromomethane			61 μg/L°						
	Methylene chloride			5 μg/L ¹						
	Methyl ethyl ketone(2-Butanone)			4000 μg/L² μg/L						
	Methyl iodide			μg/L μg/L						
	4-Methyl-2-pentanone Styrene			μg/L 100 μg/L ¹						
	1,1,1,2-Tetrachloroethane			70 μg/L 70 μg/L	:					
	1,1,2,2-Tetrachloroethane			70 μg/L 0.3 μg/L ²	:					
	Tetrachloroethylene(PCE)			5 μg/L						
	Toluene			1000 μg/L ¹						
	1,1,1-Trichloroethane			200 μg/L ¹						
	1,1,2-Trichloroethane			5 μg/L ¹						
	Trichloroethylene(TCE)			5 μg/L ¹						
	Trichloroflouromethane			2000 μg/L ²	:					
	1,2,3-Trichloropropane			40 μg/L ²						
	Vinyl acetate			410 μg/L ⁵						
	Vinyl chloride			2 μg/L¹						
	Xylenes			10000 μg/L ¹						

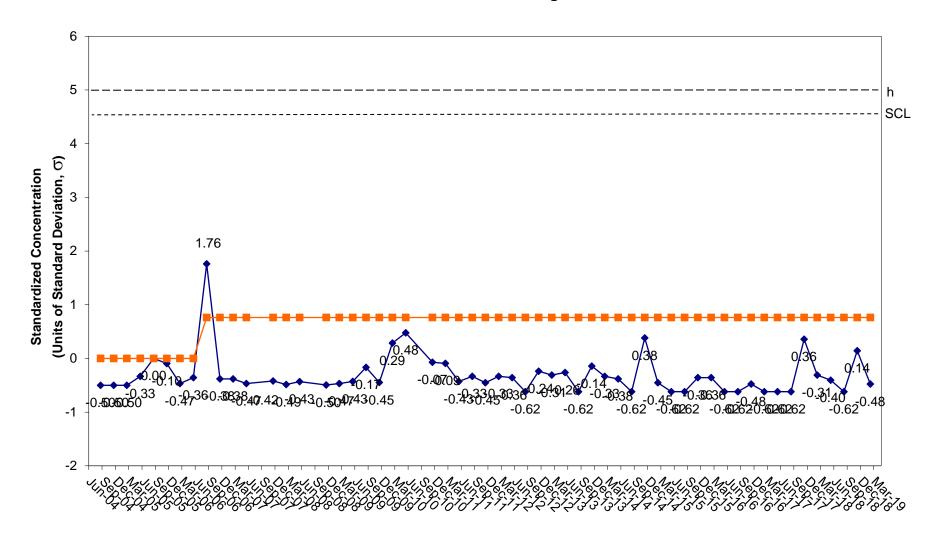

- 20 40 μg/L⁴ Methyl tert-butyl ether (MTBE) 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit.

However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

" = Exceedance of TL ND = Not Detected

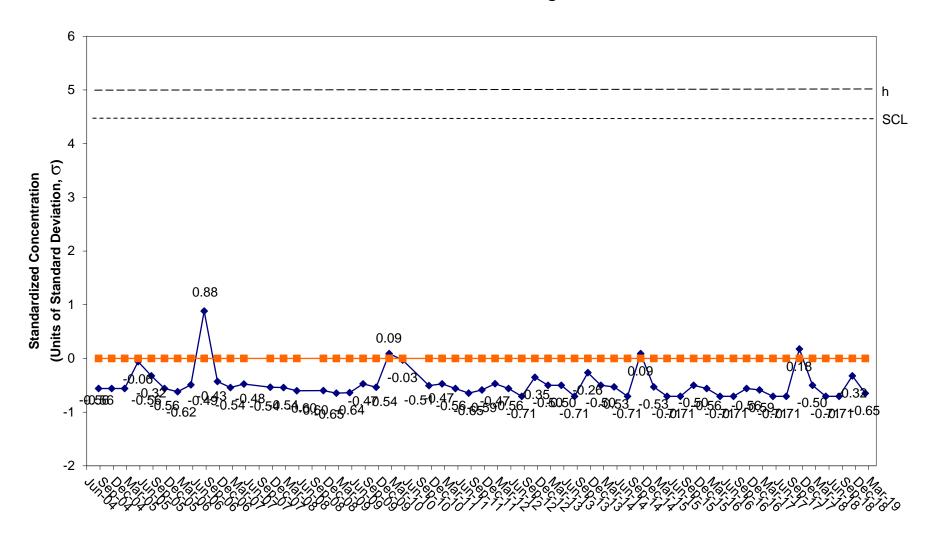

^{*} Tolerance Limit (TL) constructed from background (upgradient) well data from OW-9.

Historical Tolerance Limit Concentrations from Background Well Tiverton Landfill Compliance Sampling

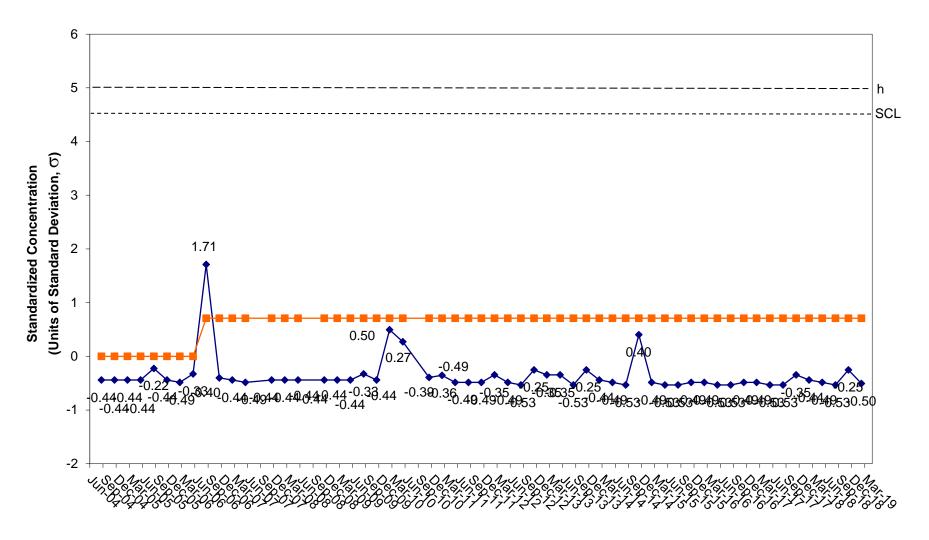


<u>ATTACHMENT NO. 5</u> CUSUM METHOD STATISTICAL EVALUATION

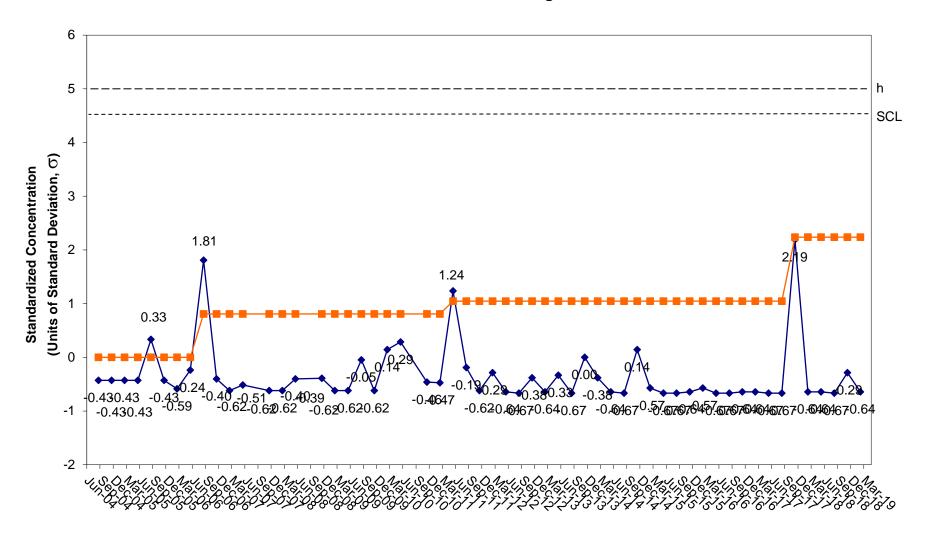
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Complaince Well OW-9



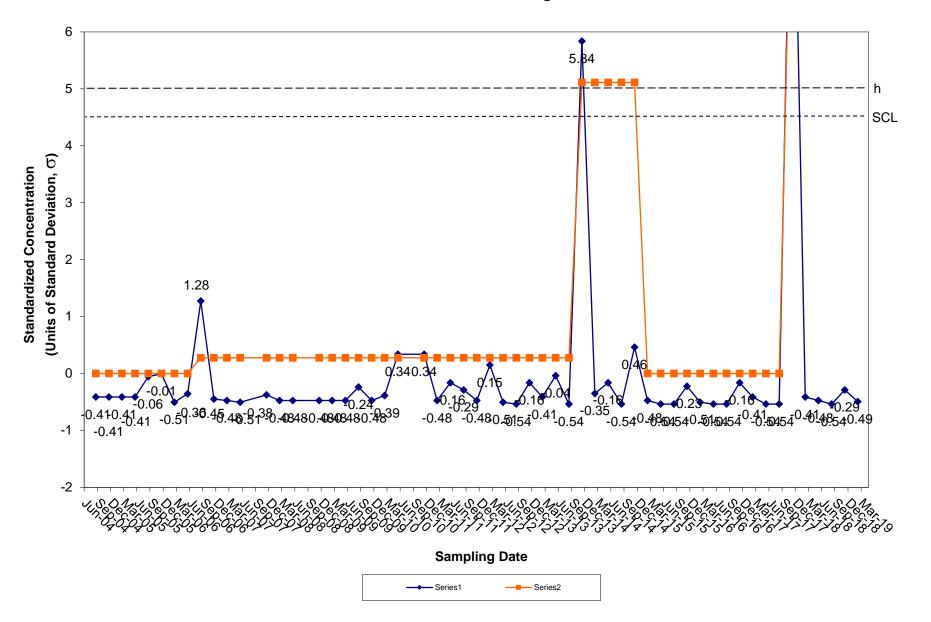
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-9



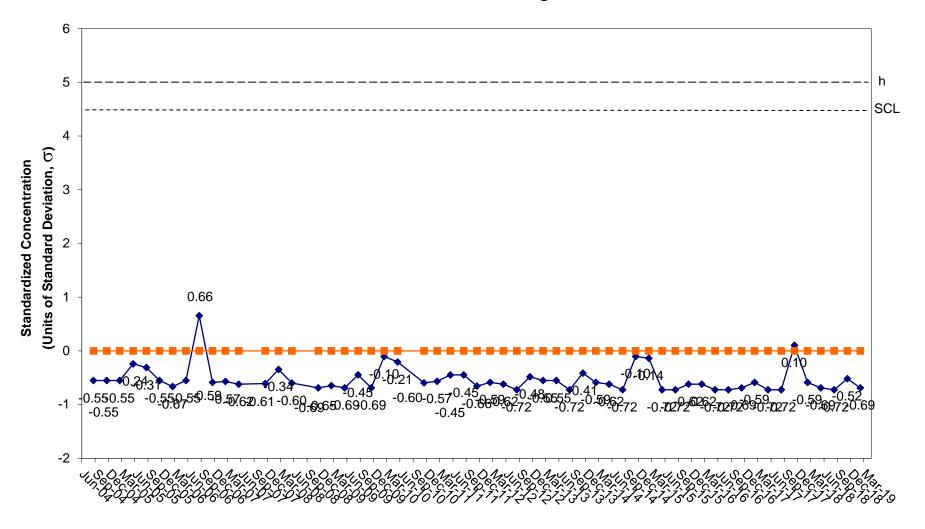
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-9



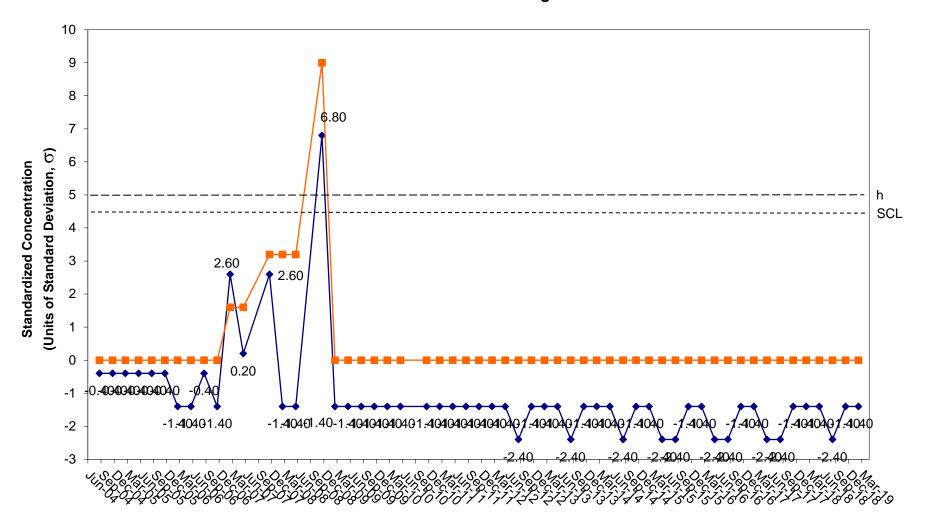
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Background Well OW-9



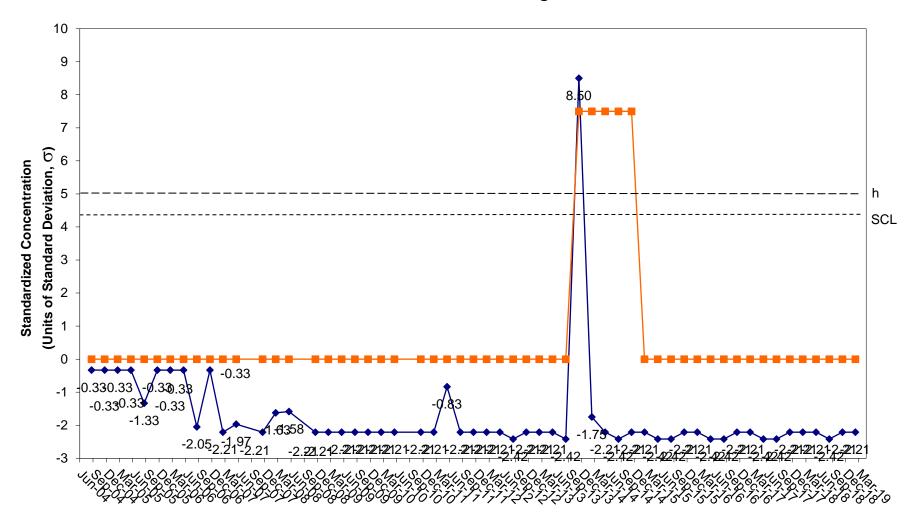
CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-9



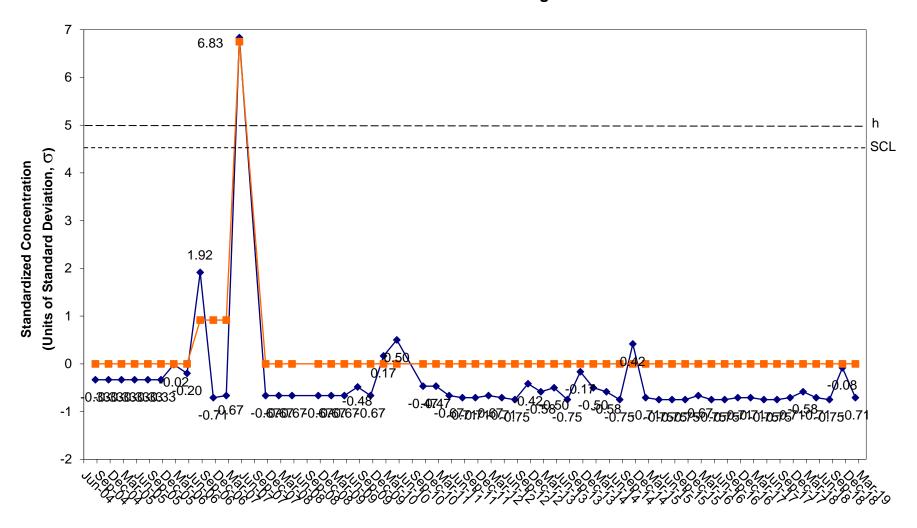
CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-9



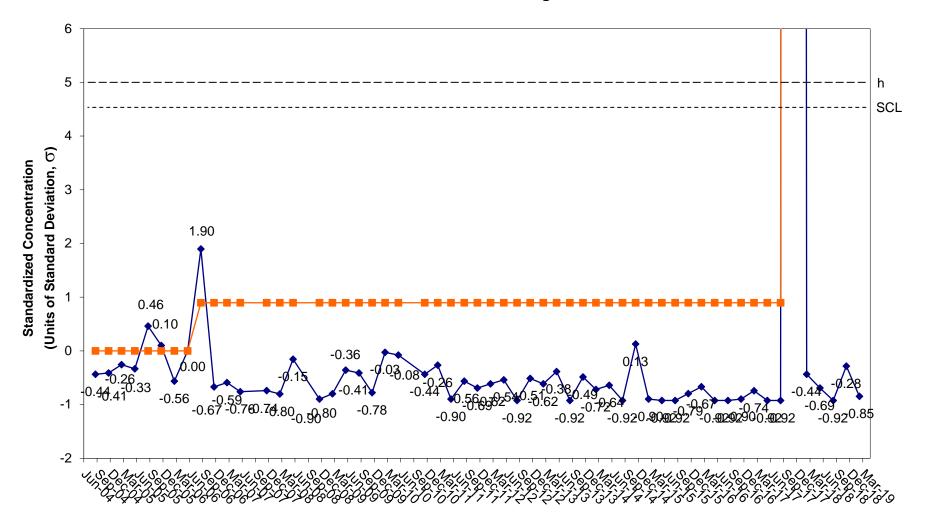
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-9



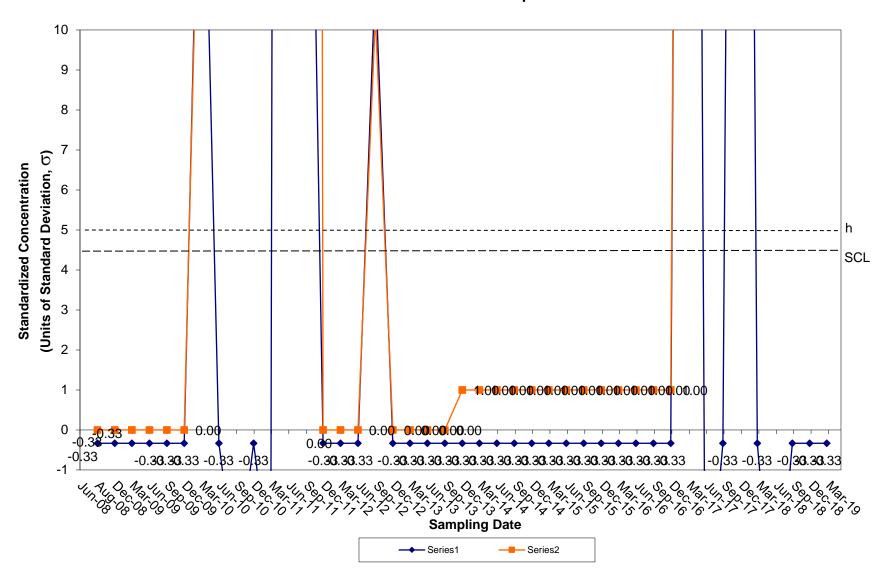
CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Background Well OW-9



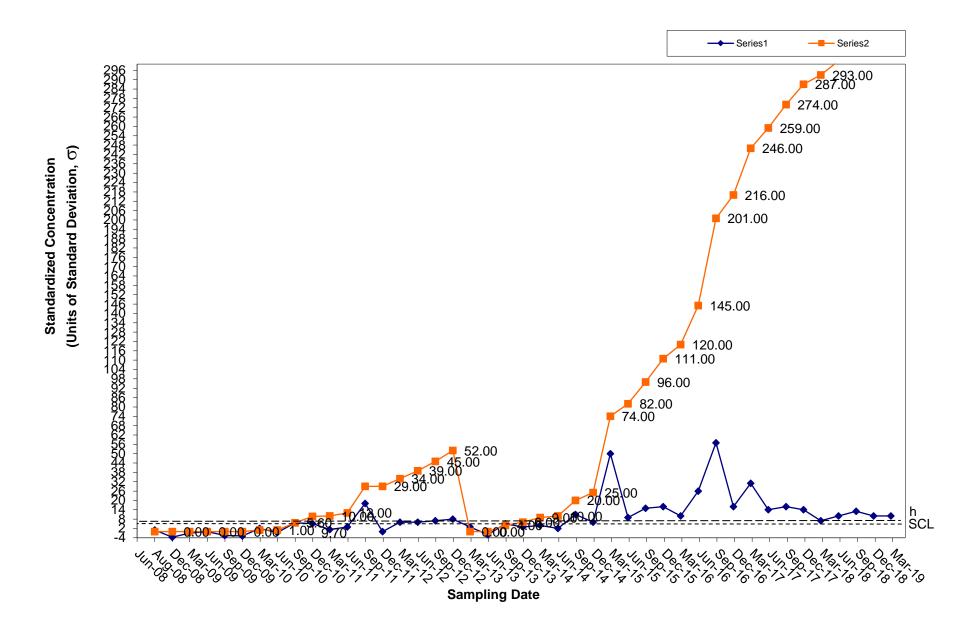
CUSUM Control Chart for Tin Tiverton Landfill Groundwater Background Well OW-9

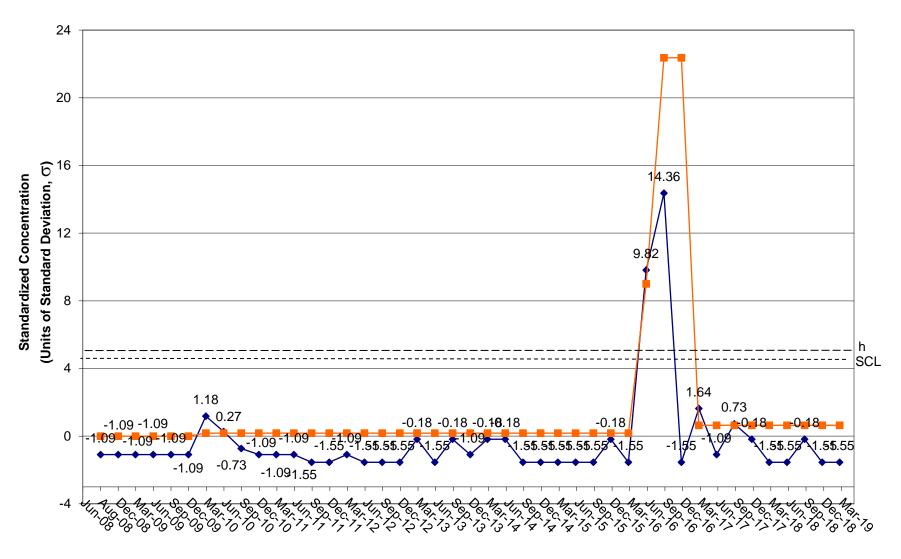


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-9

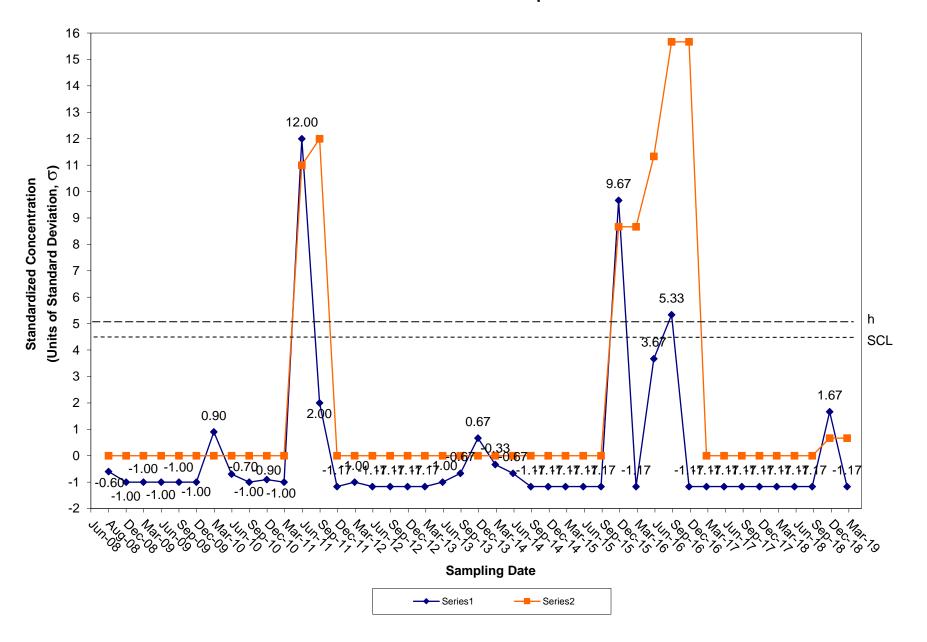


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-9

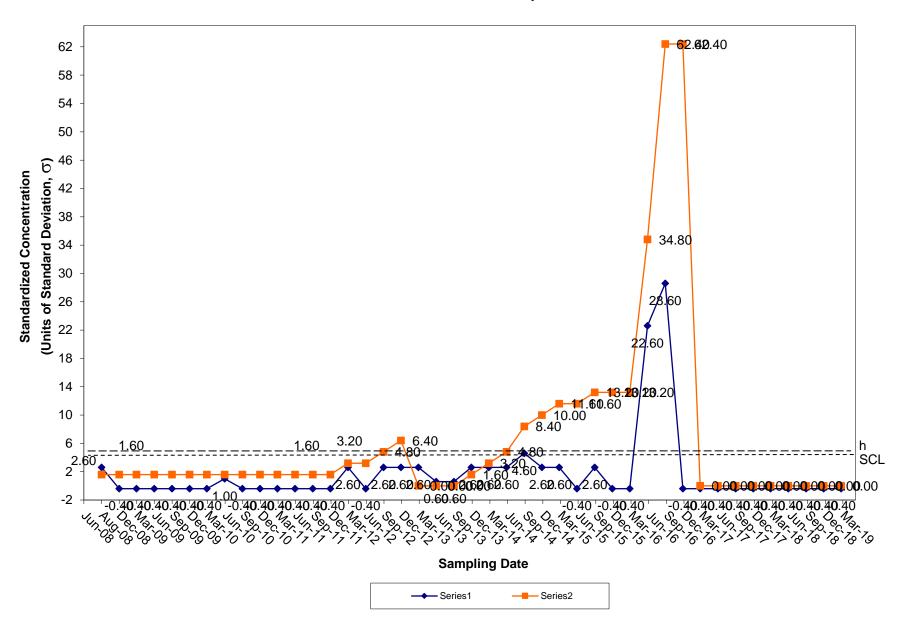


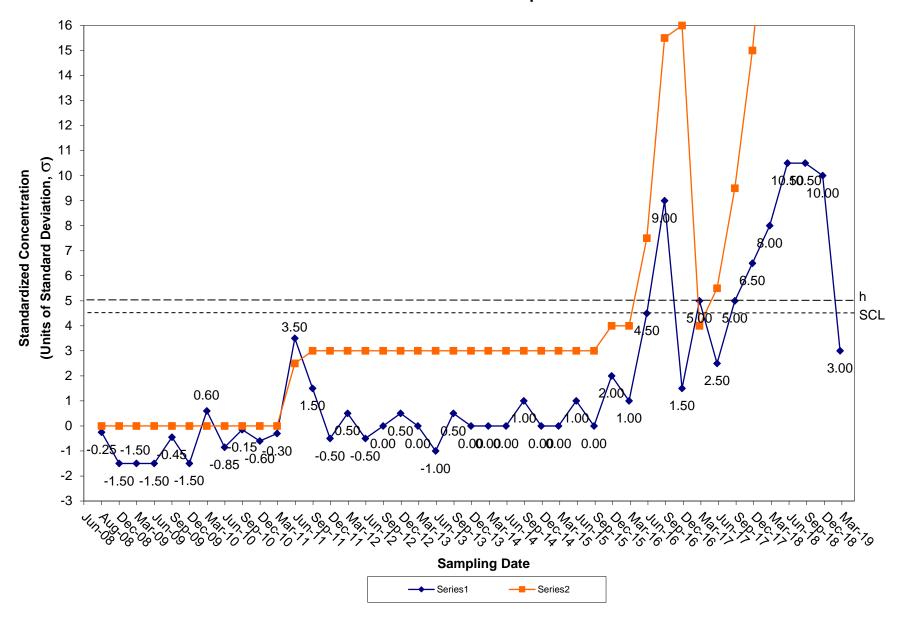

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-12

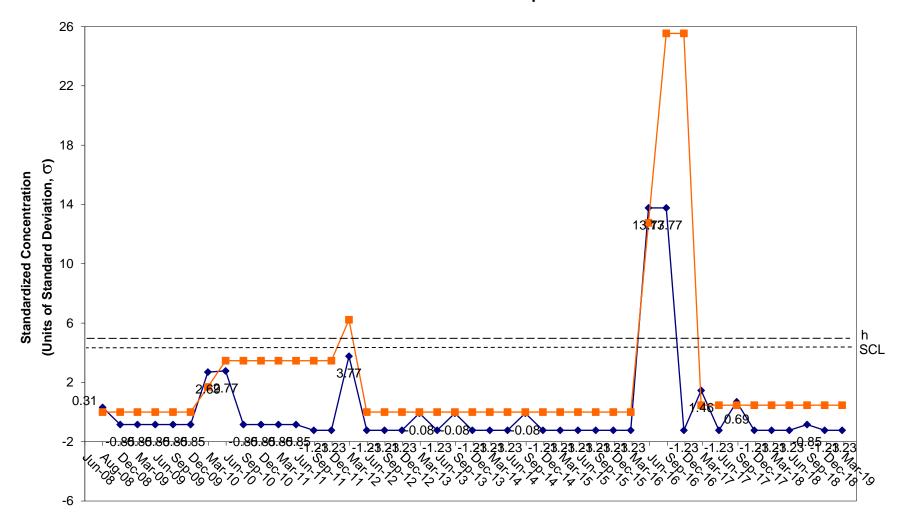
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-12



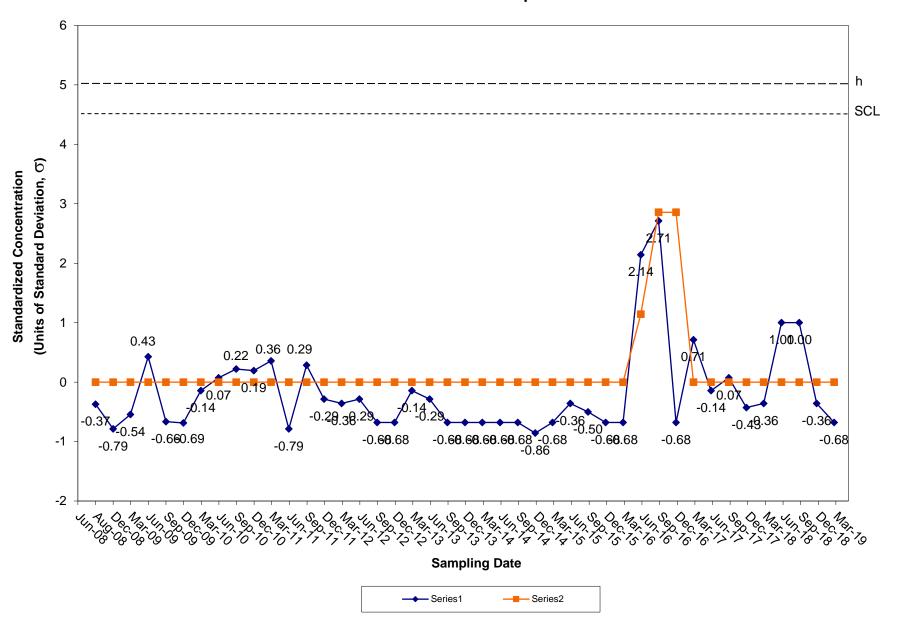
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-12



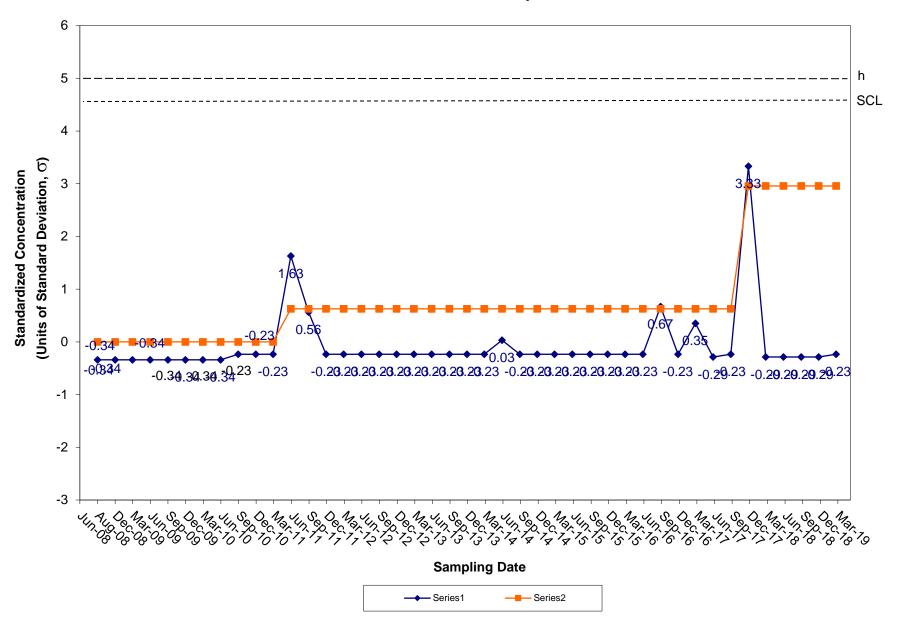

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-12

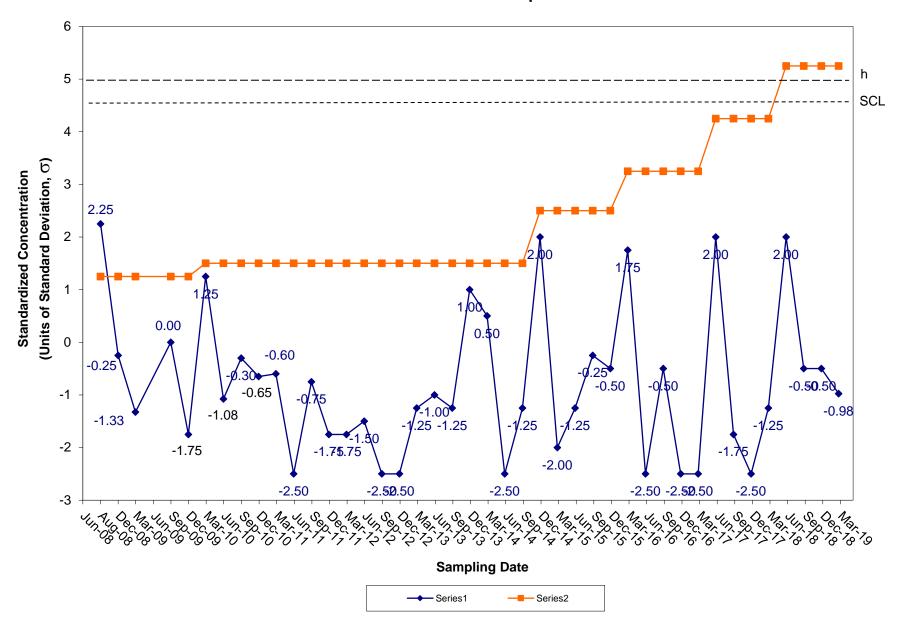

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-12

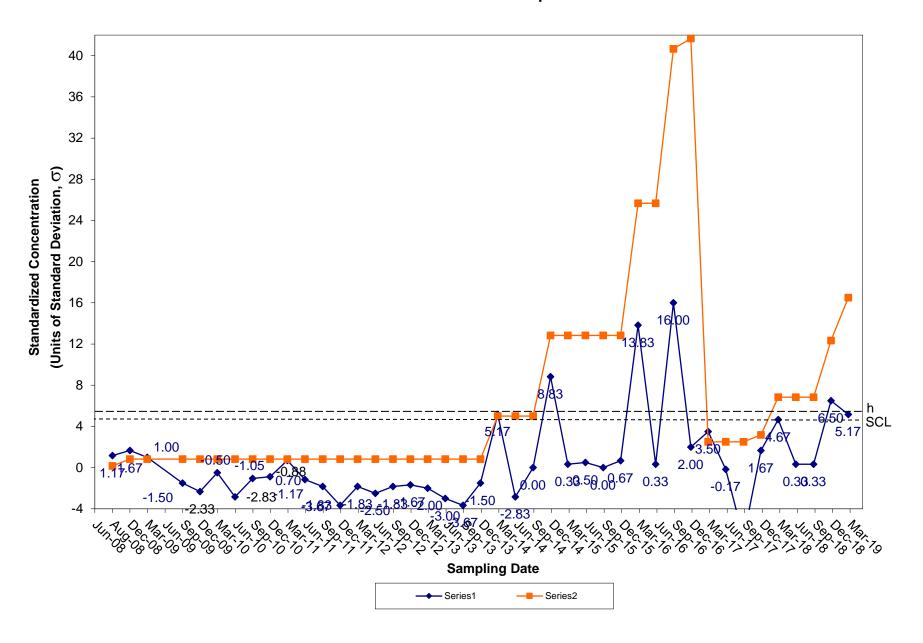
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-12

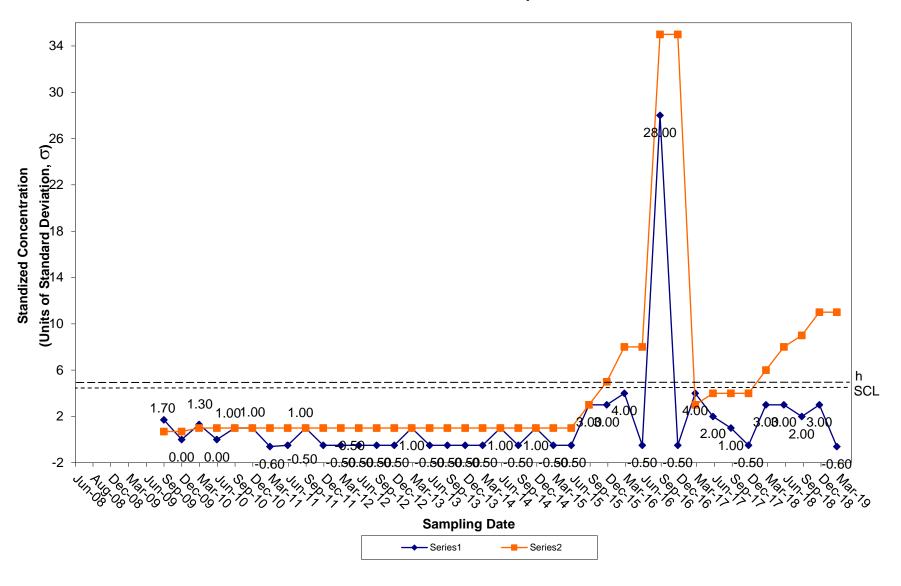


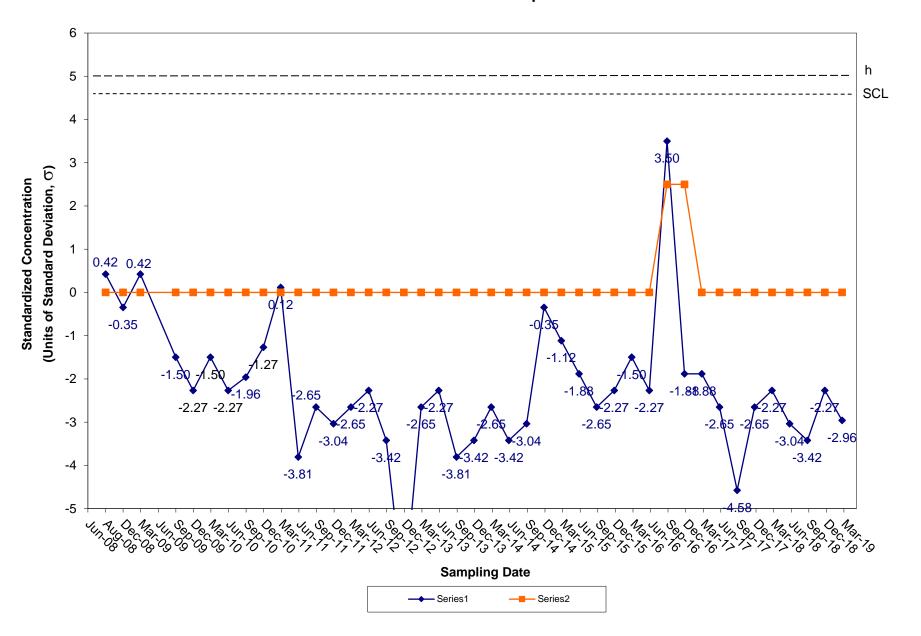
CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-12

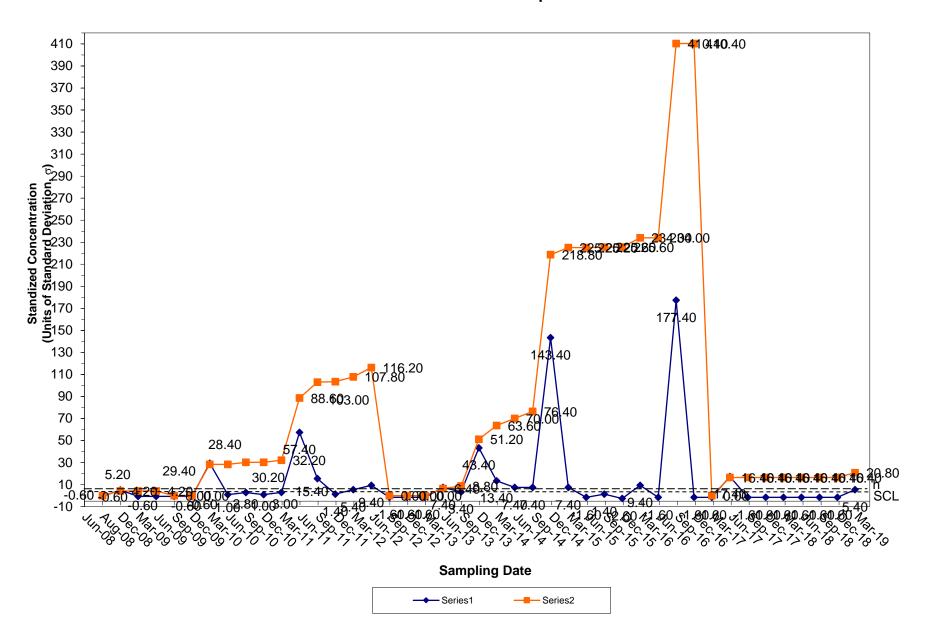


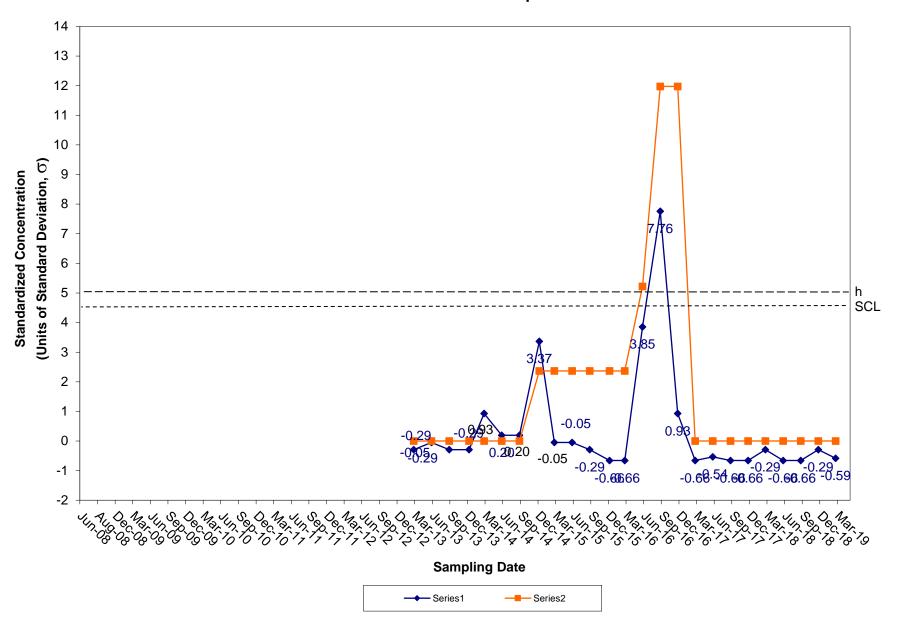

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-12

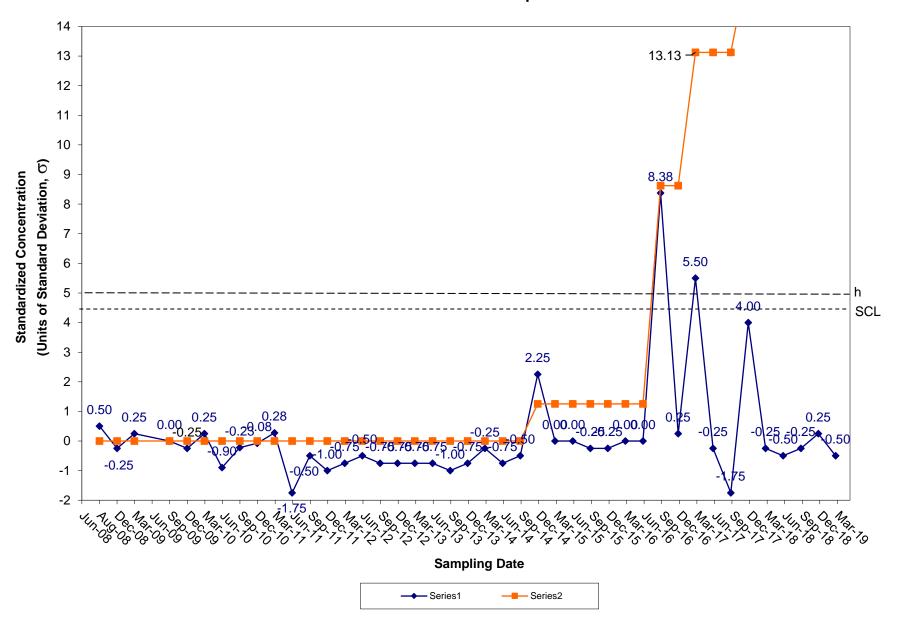

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-13

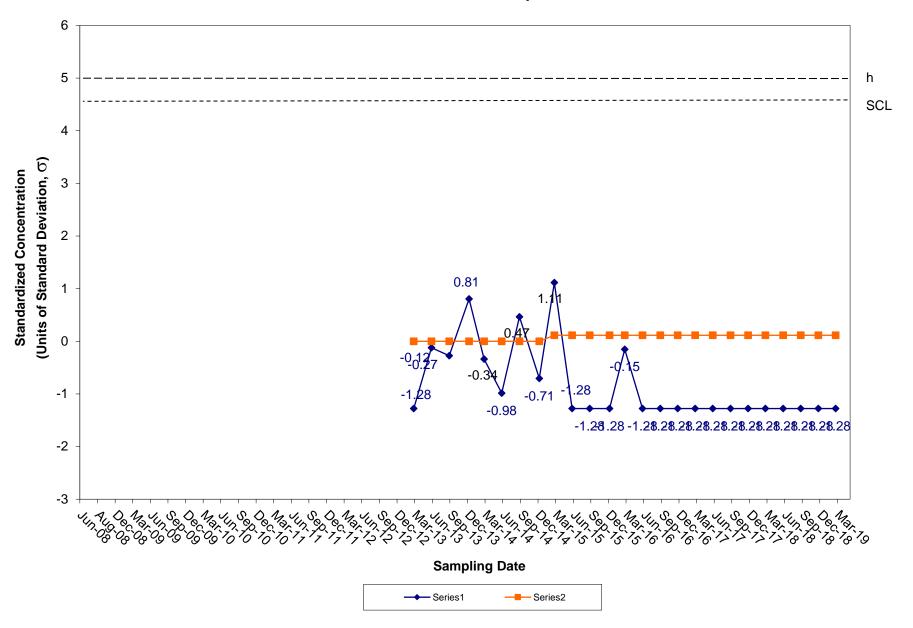

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-13

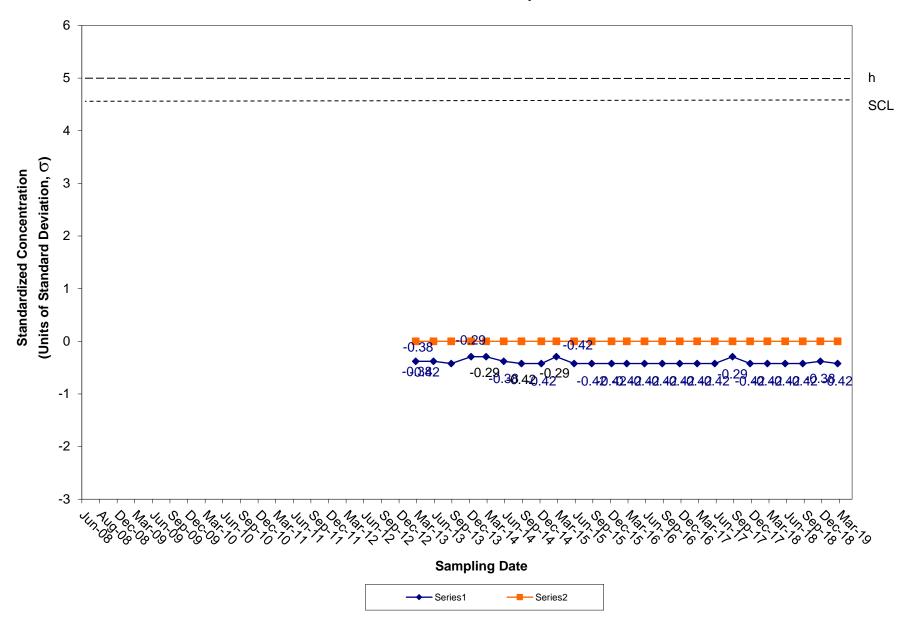

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-13

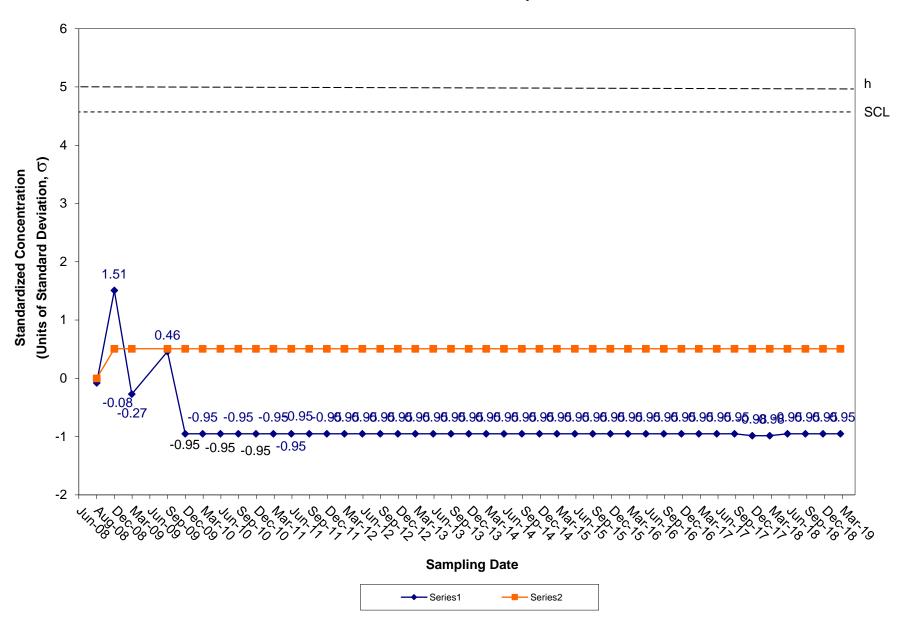

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Complaince Well OW-13

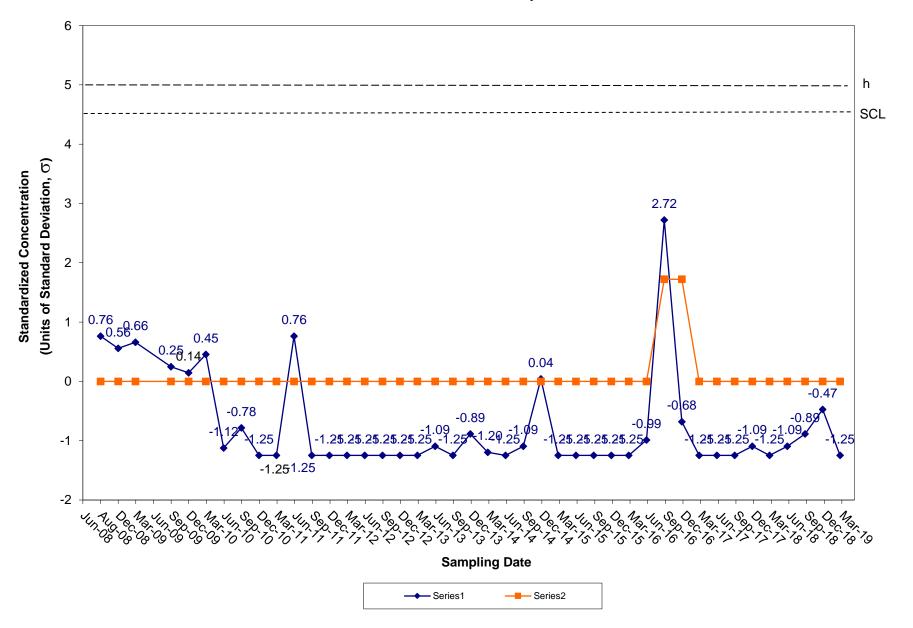

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-13

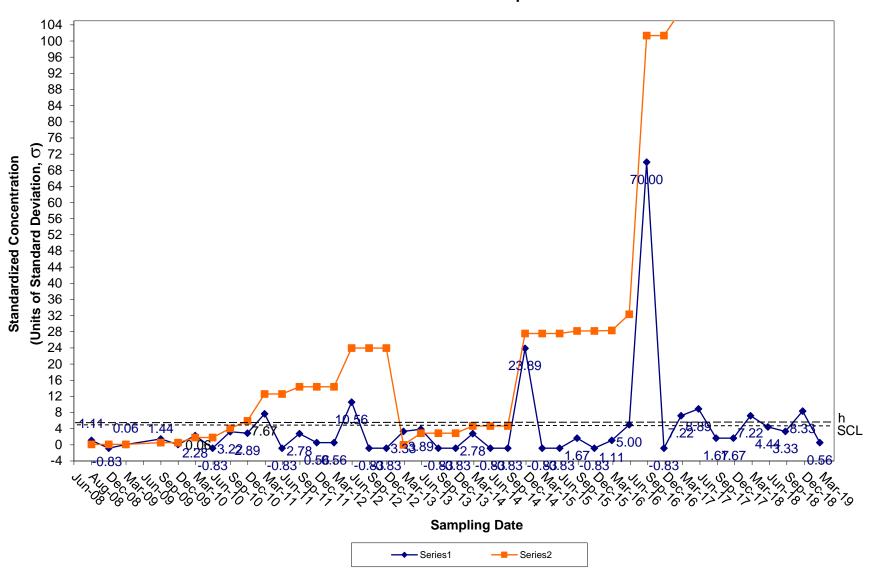

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-13

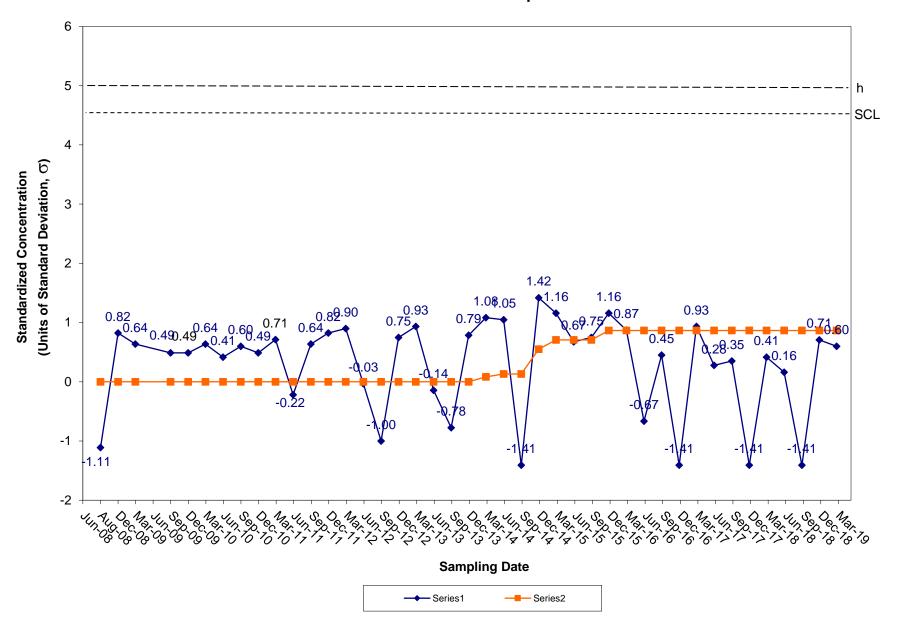

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-13

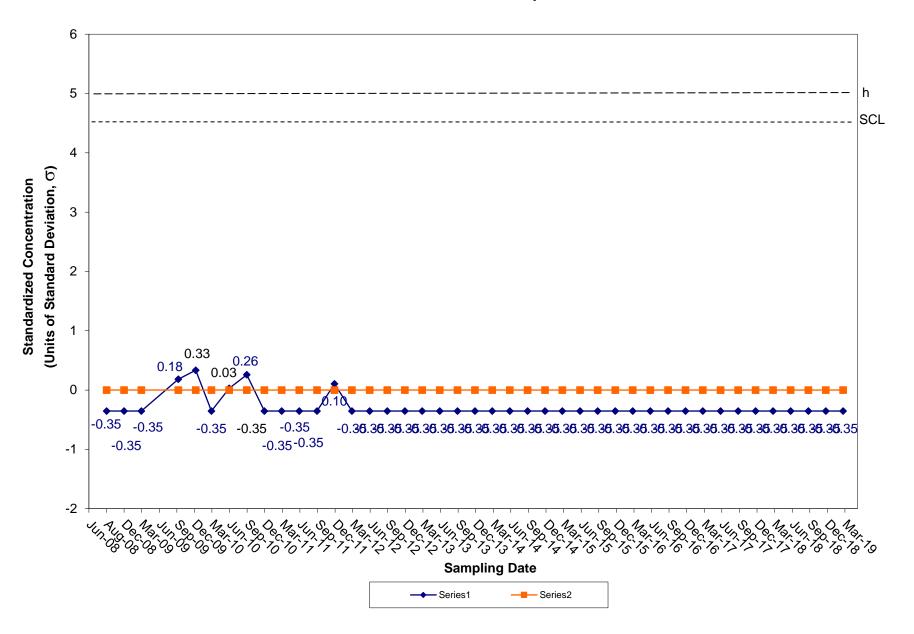

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-13

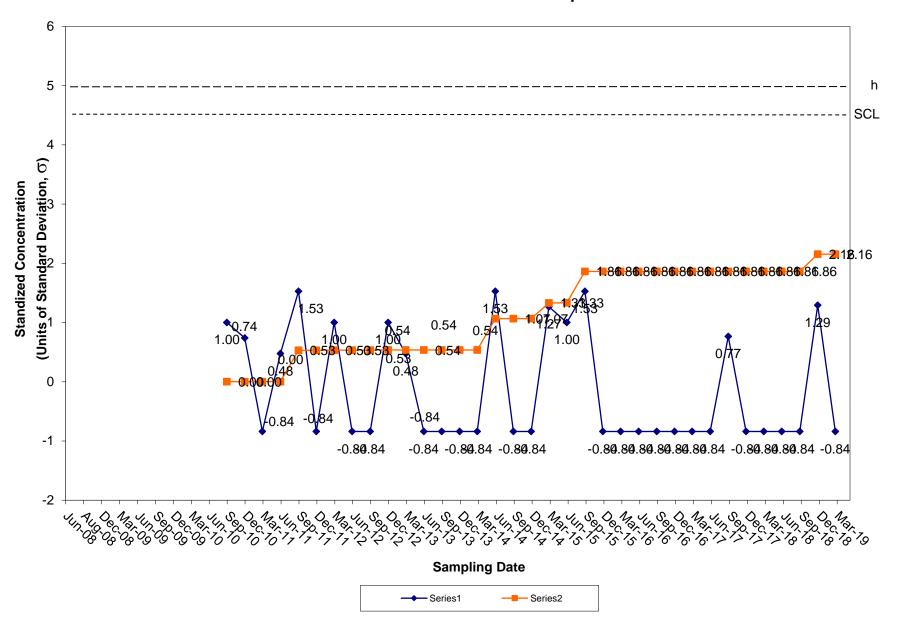

CUSUM Control Chart for Selenium Tiverton Landfill Groundwater Compliance Well OW-13

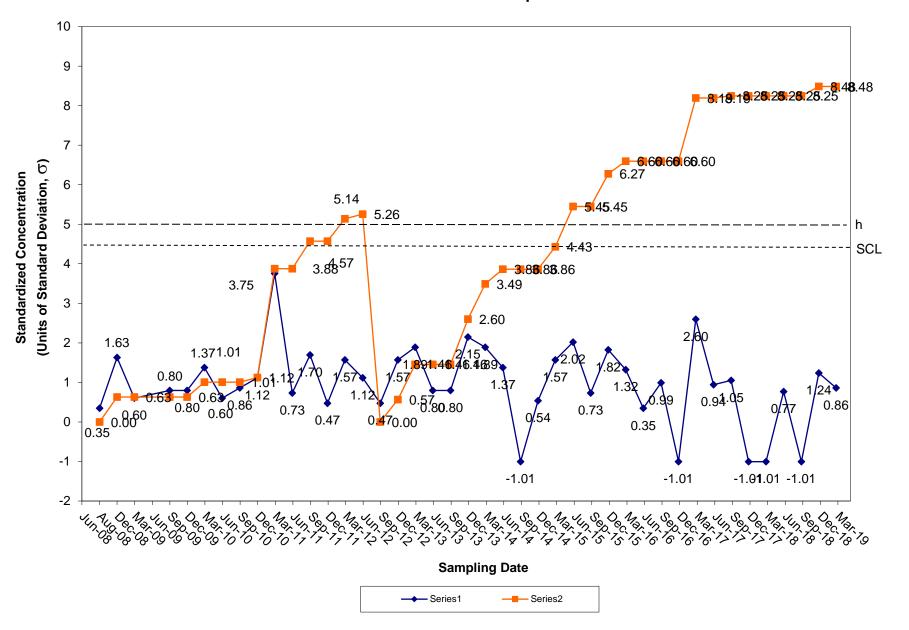

CUSUM Control Chart for Silver Tiverton Landfill Groundwater Compliance Well OW-13

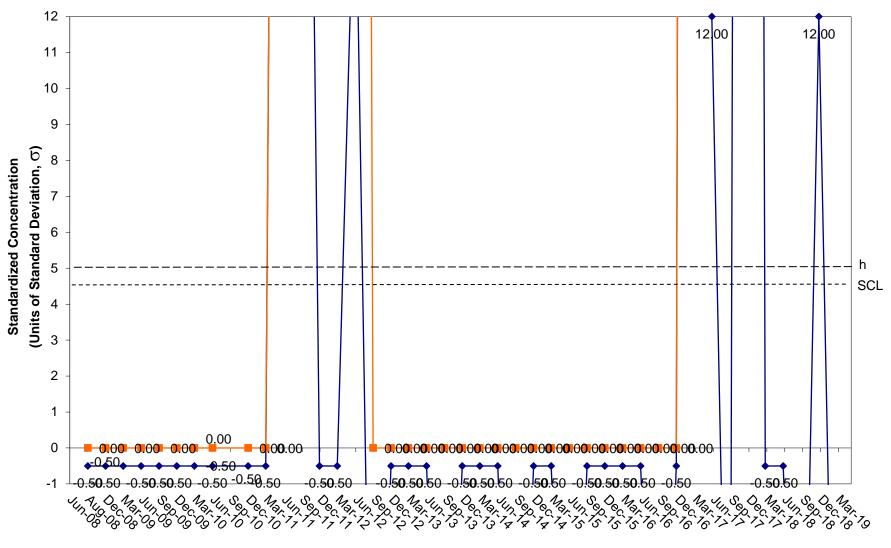

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-13

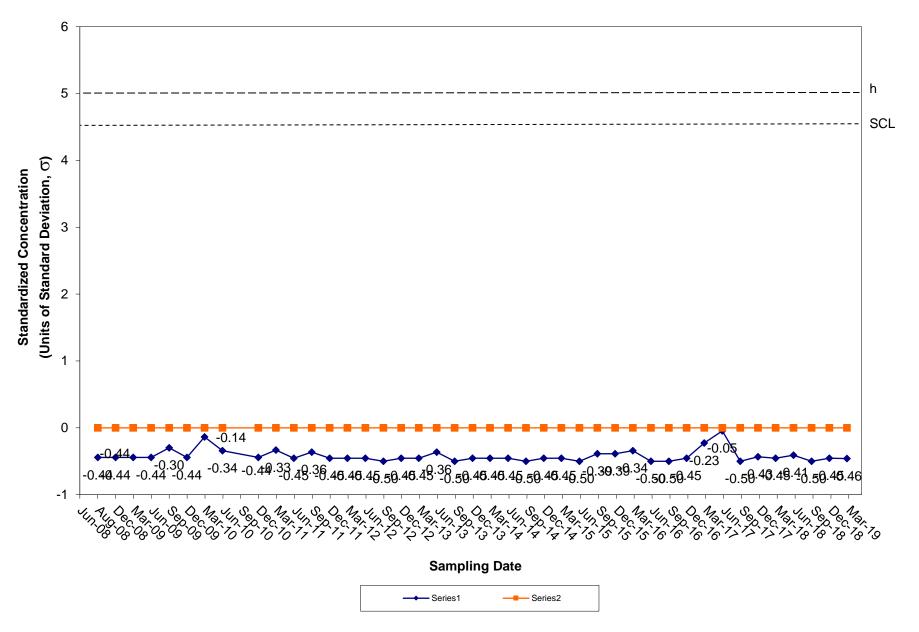

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-13

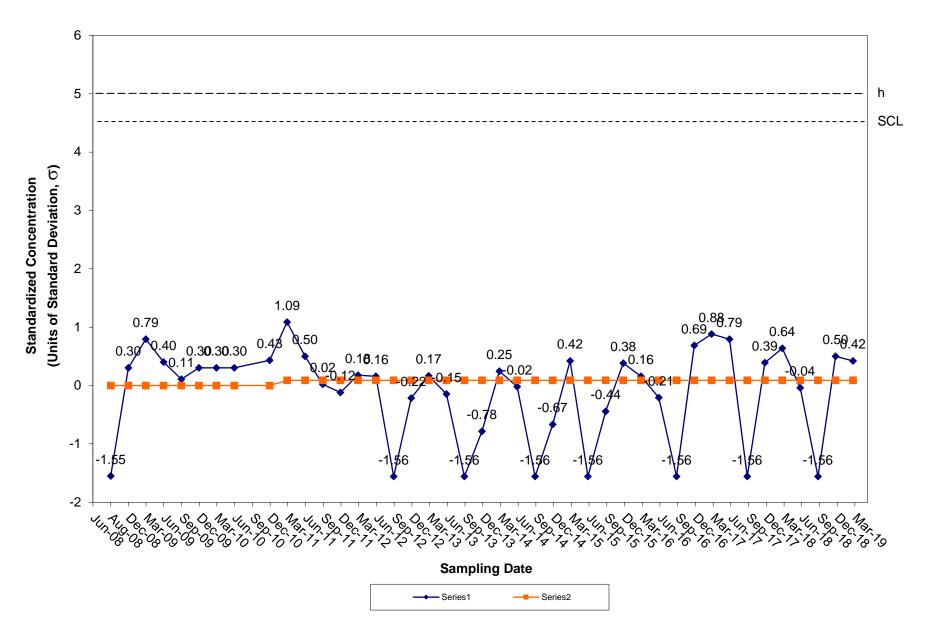

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-13

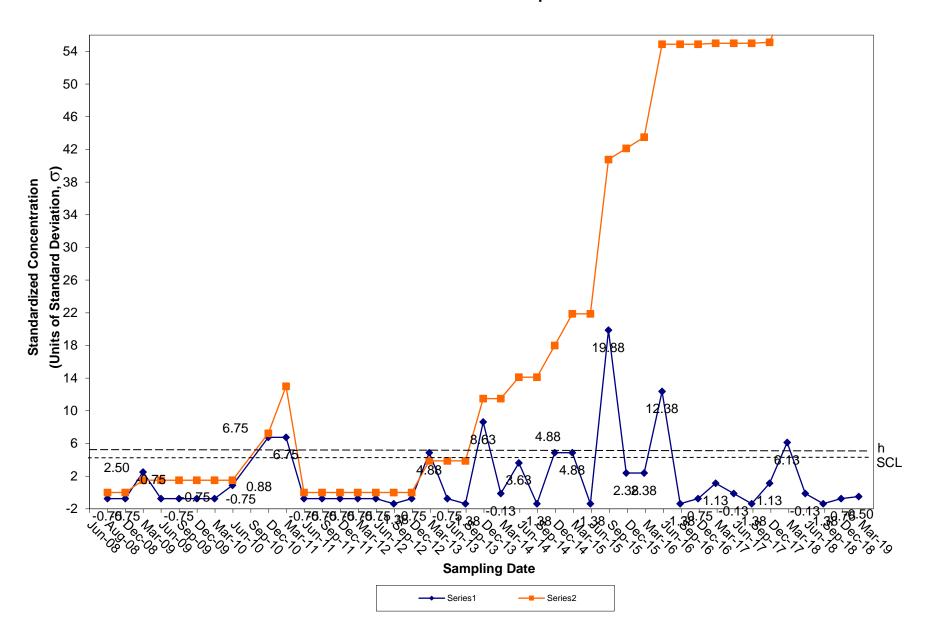

CUSUM Control Chart for 1,4-Dichlorobenzene - Adjusted Baseline Tiverton Landfill Groundwater Complaince Well OW-13

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-13

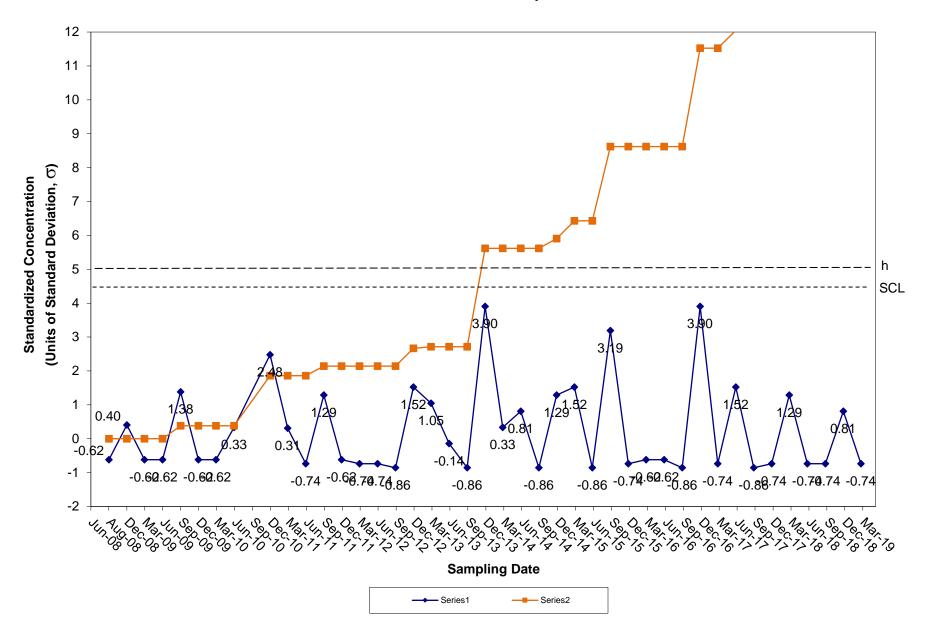

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-14

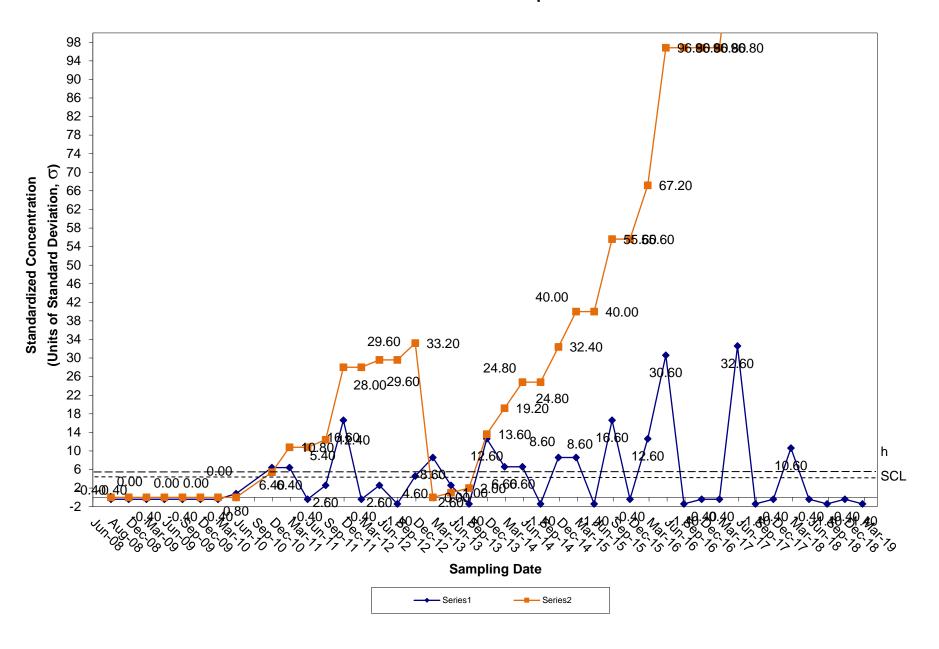

Sampling Date

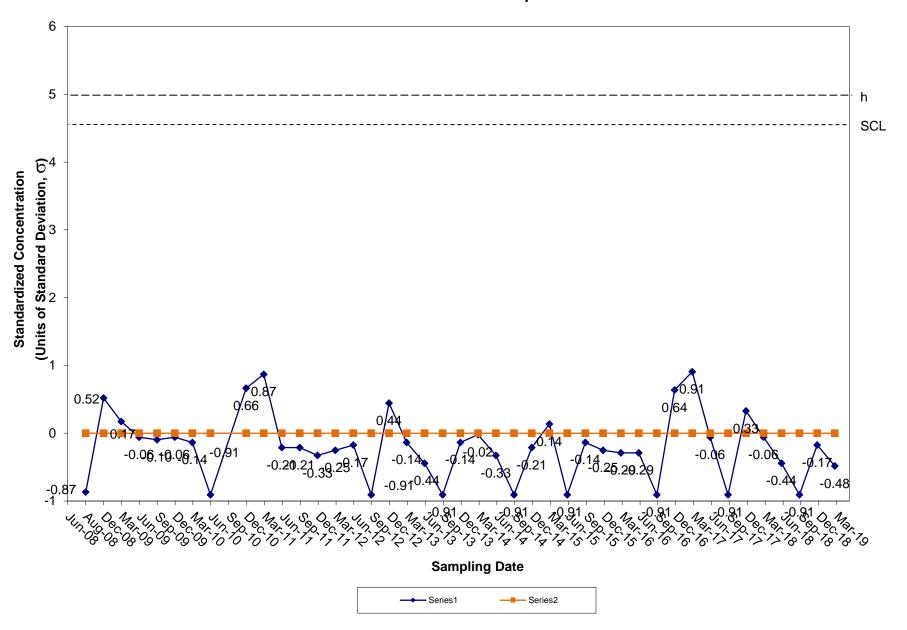
CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-14

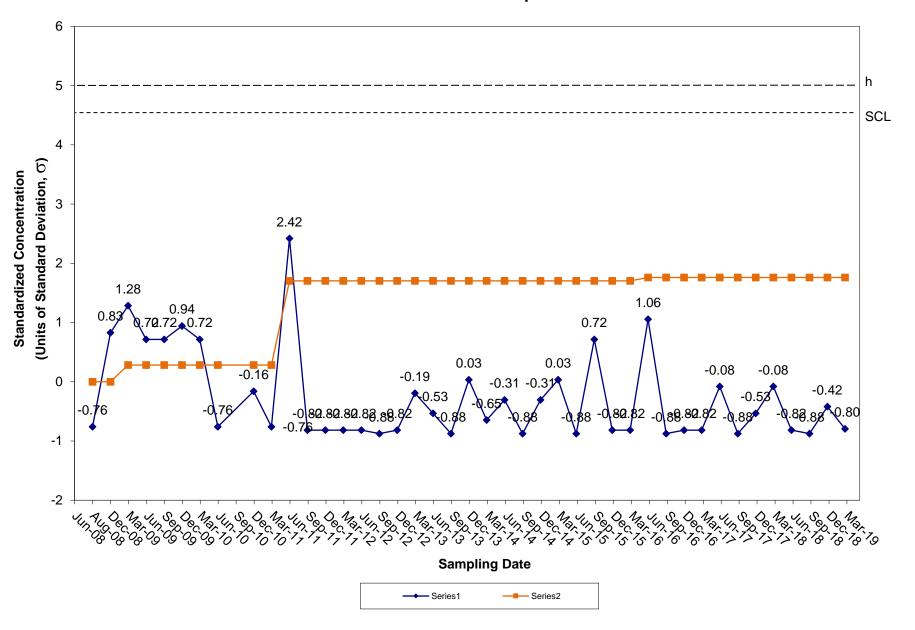

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-14

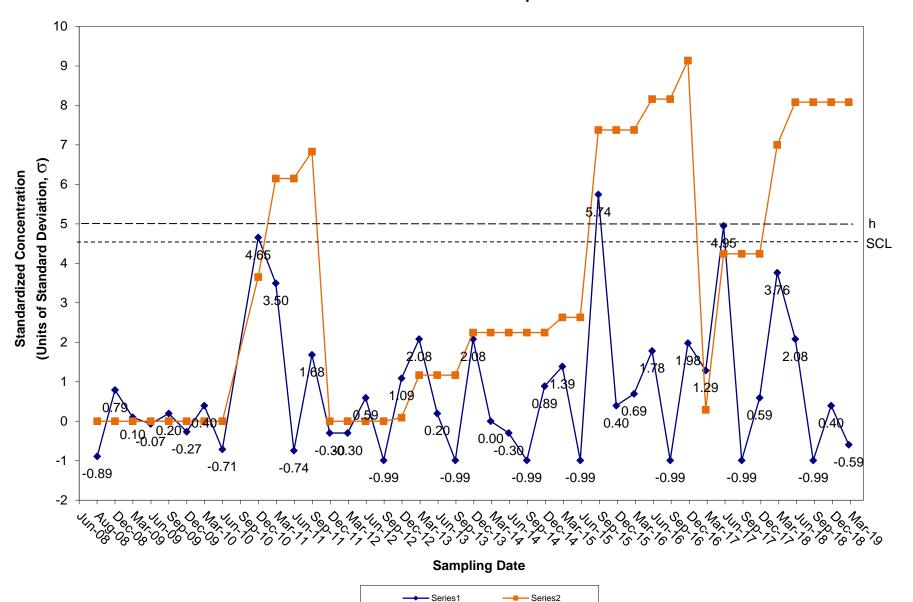
CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-14

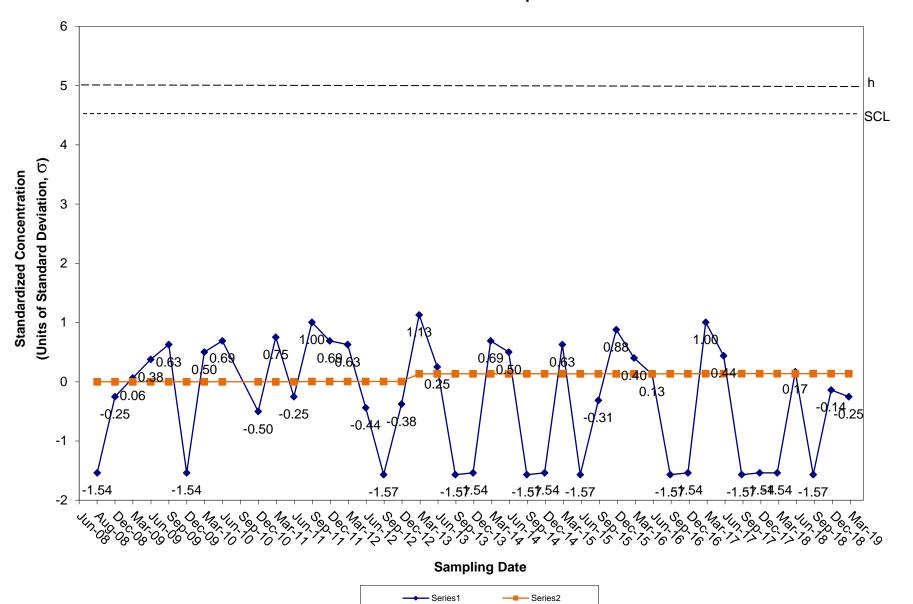

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-14

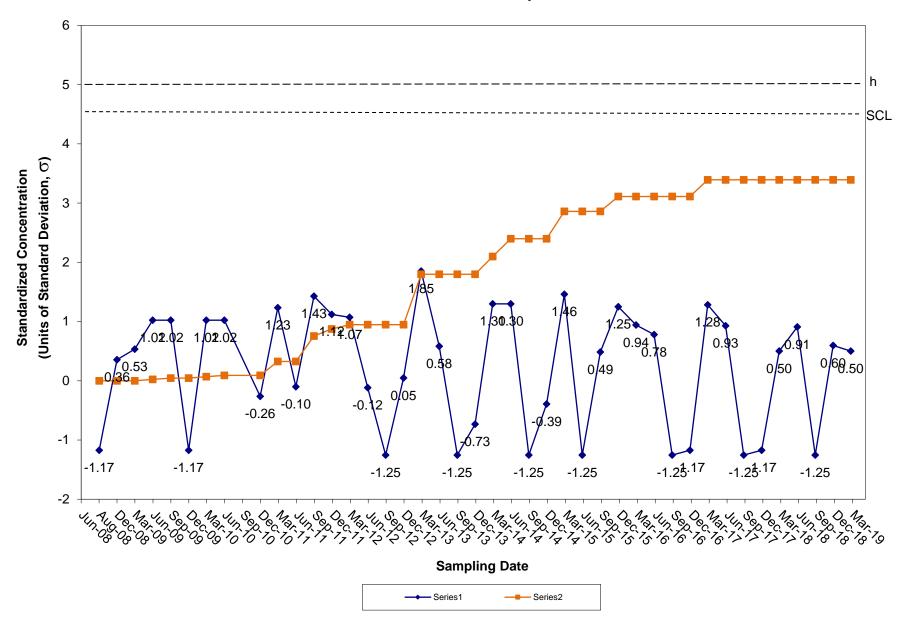

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-14

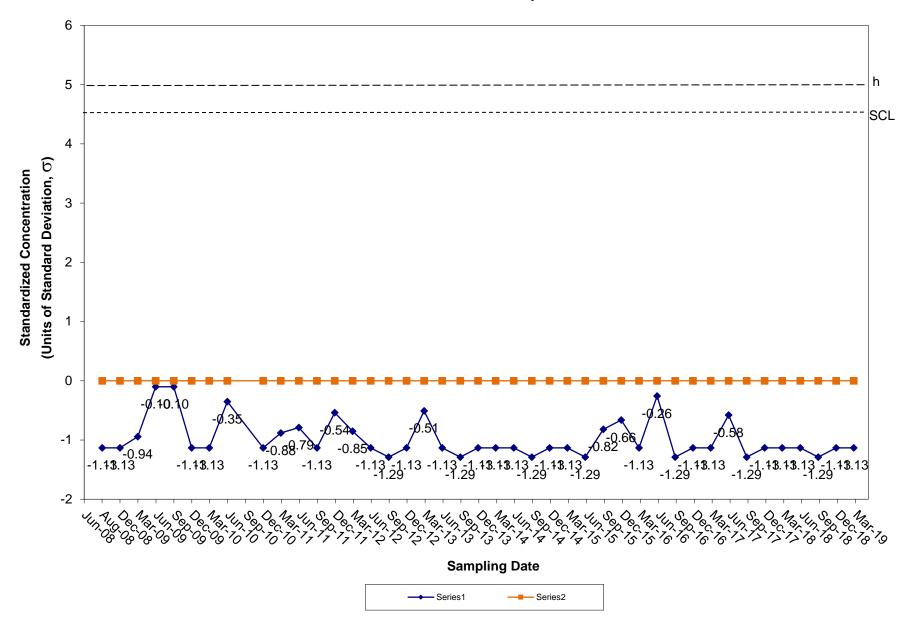

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-14

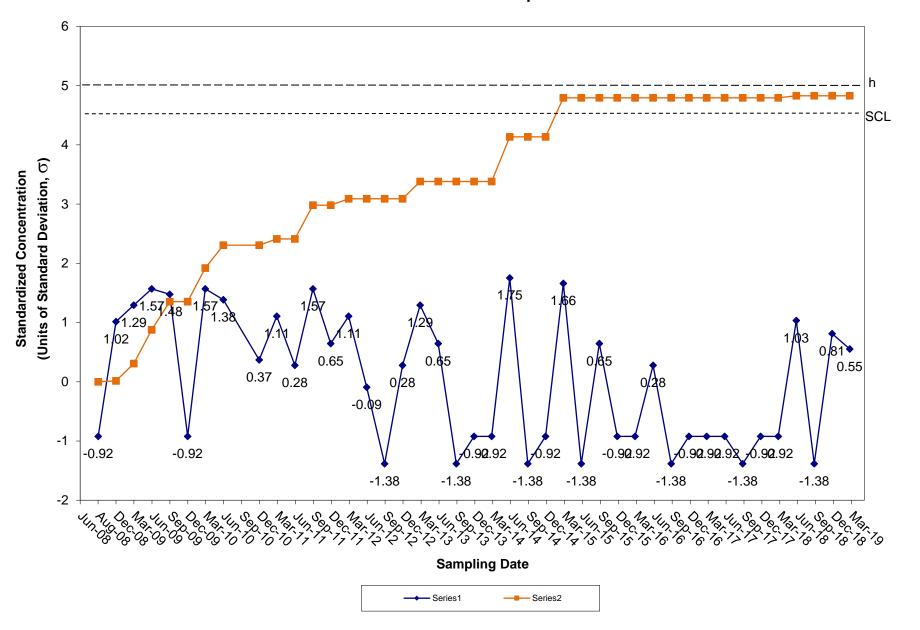

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-14

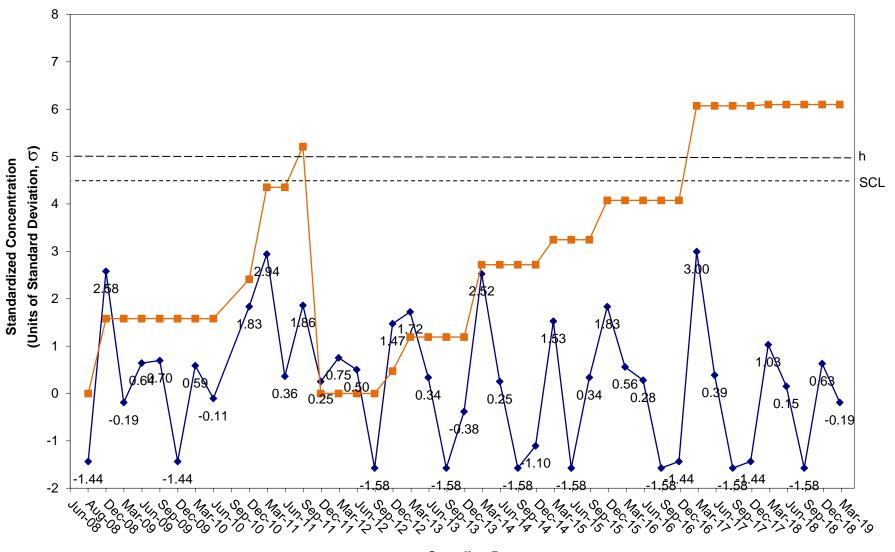

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-14

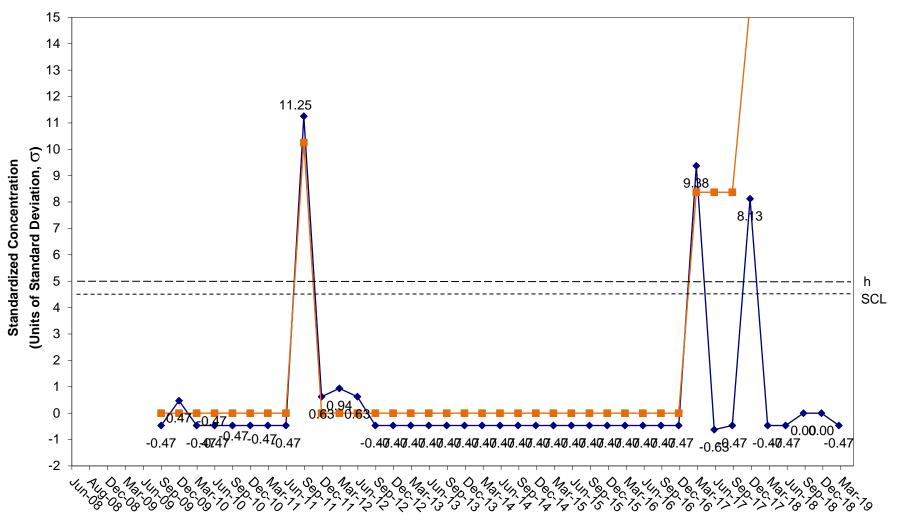

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-14

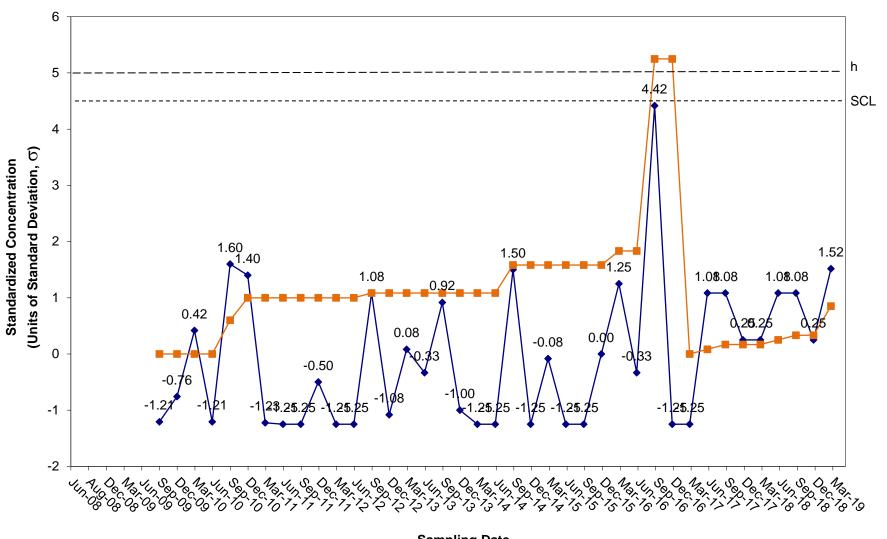

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-14

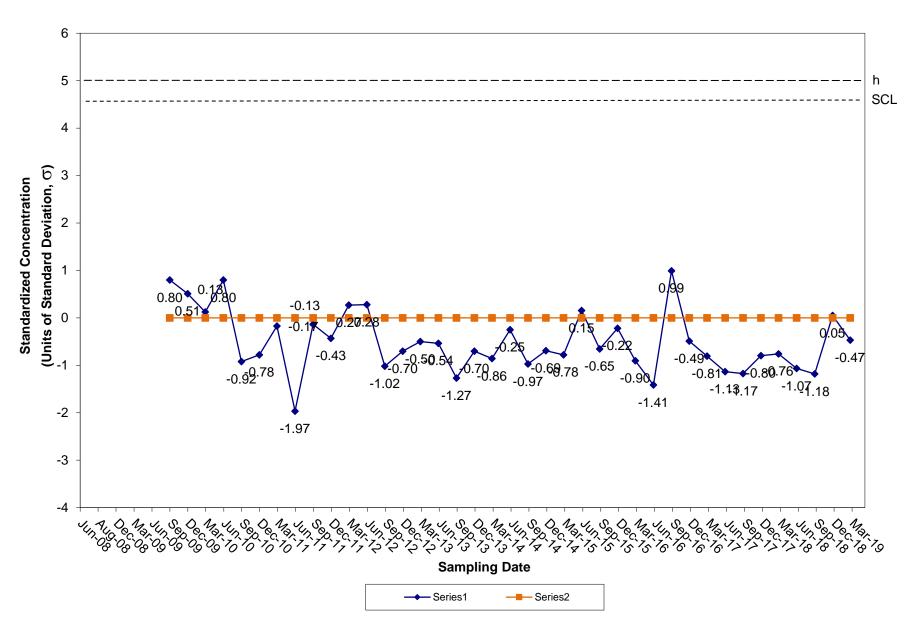
CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

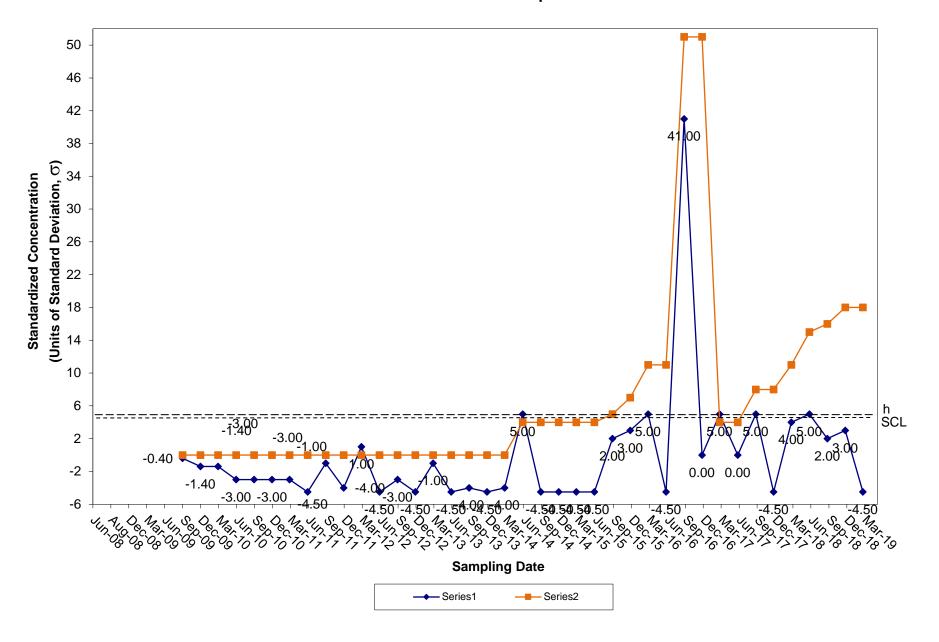

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-14

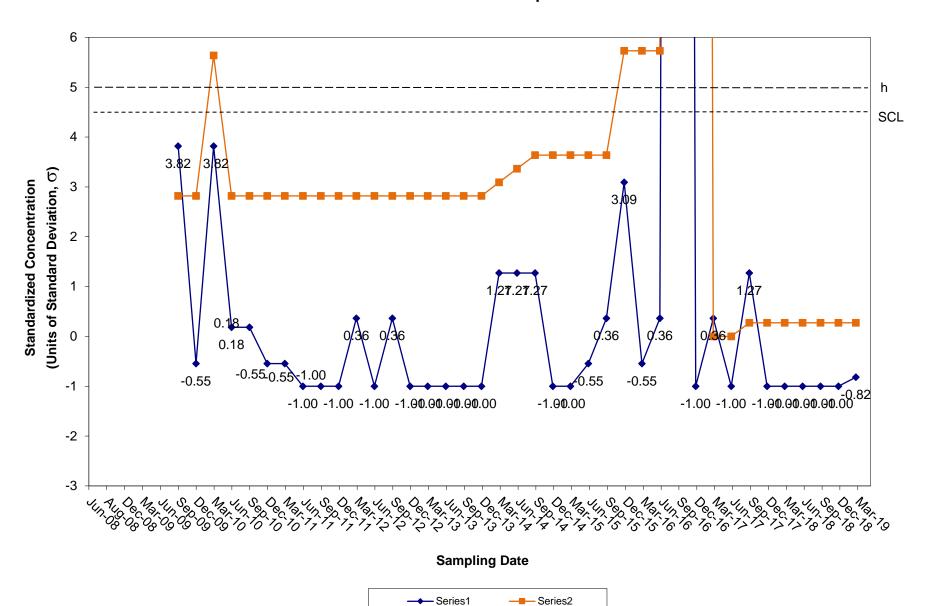
Sampling Date

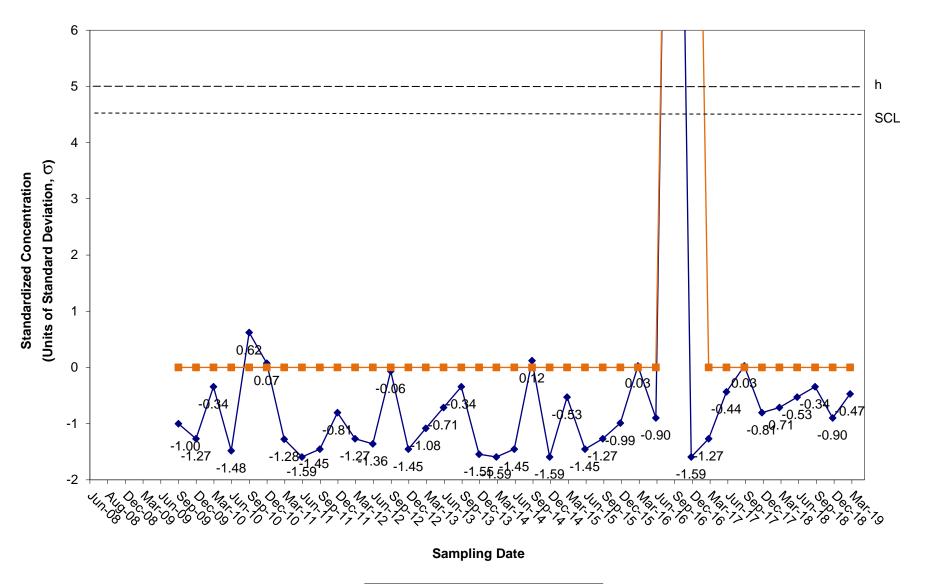

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-15

Sampling Date

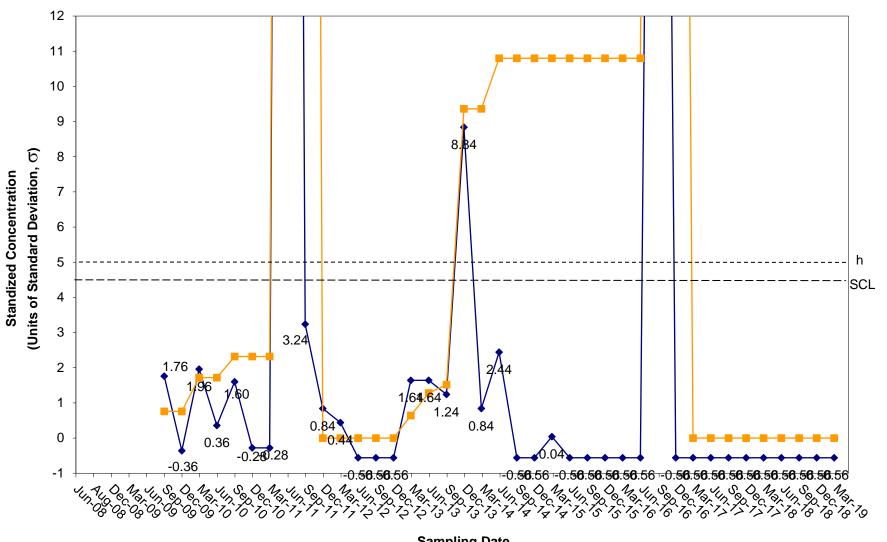

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-15


Sampling Date

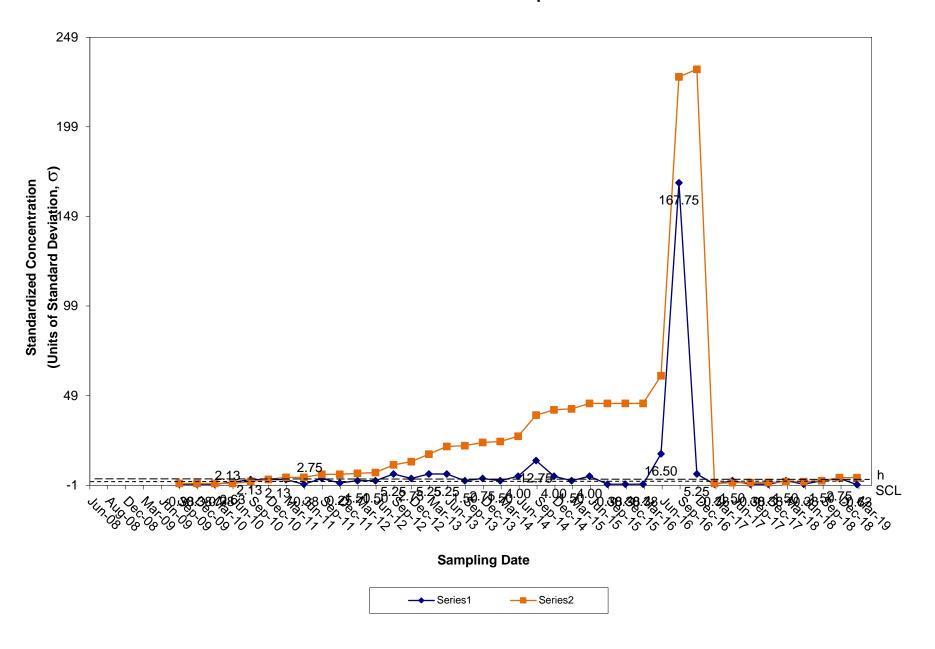

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-15

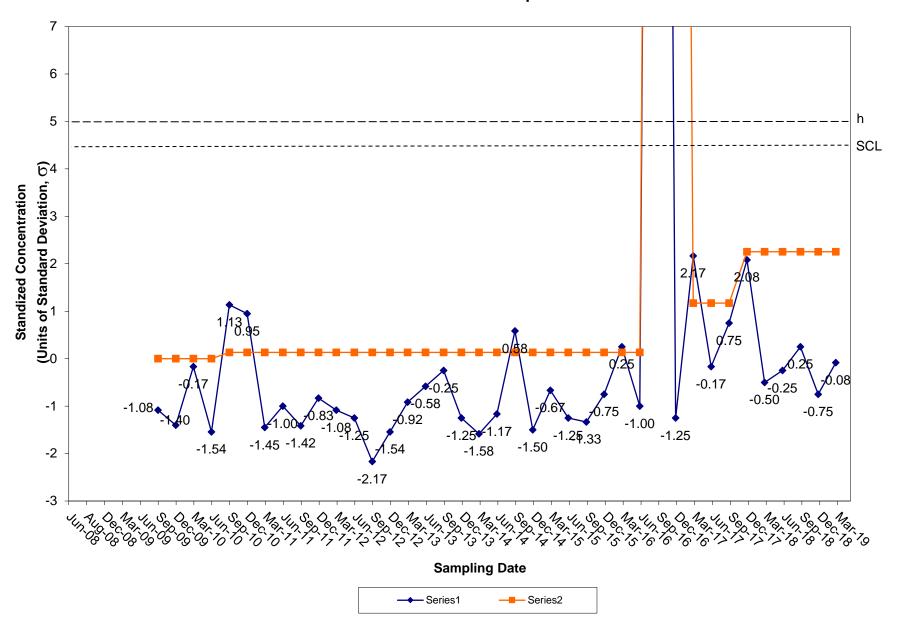

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-15

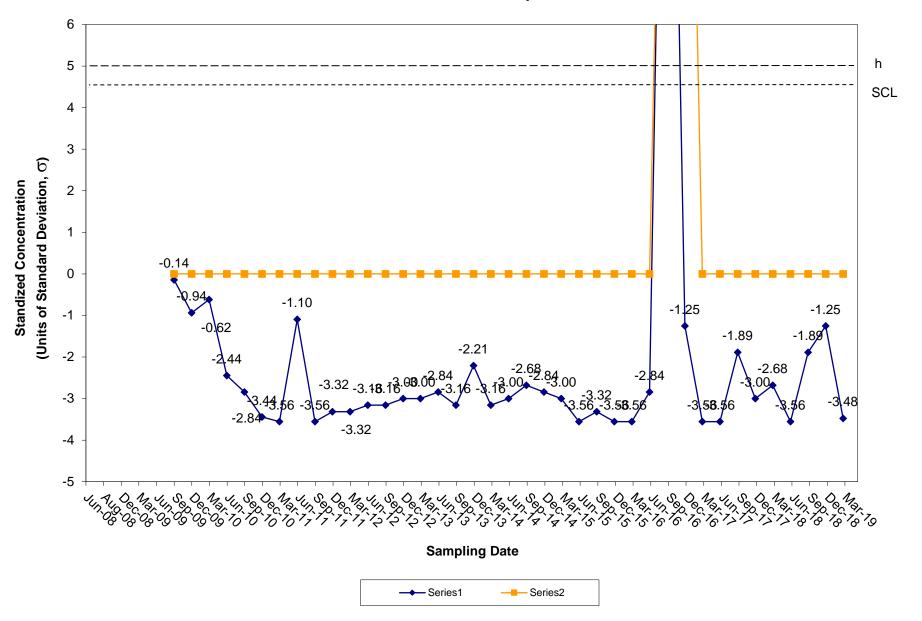
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-15

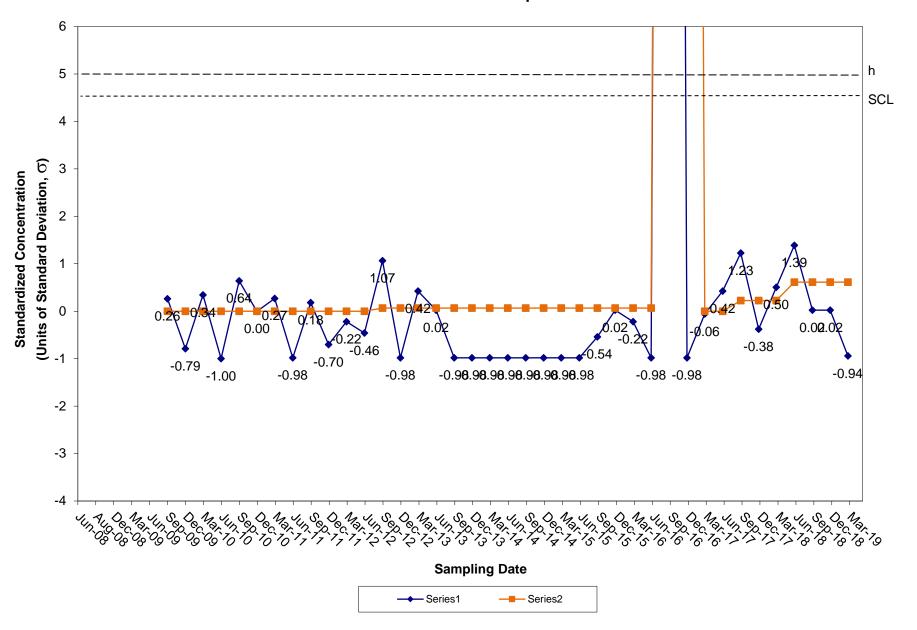


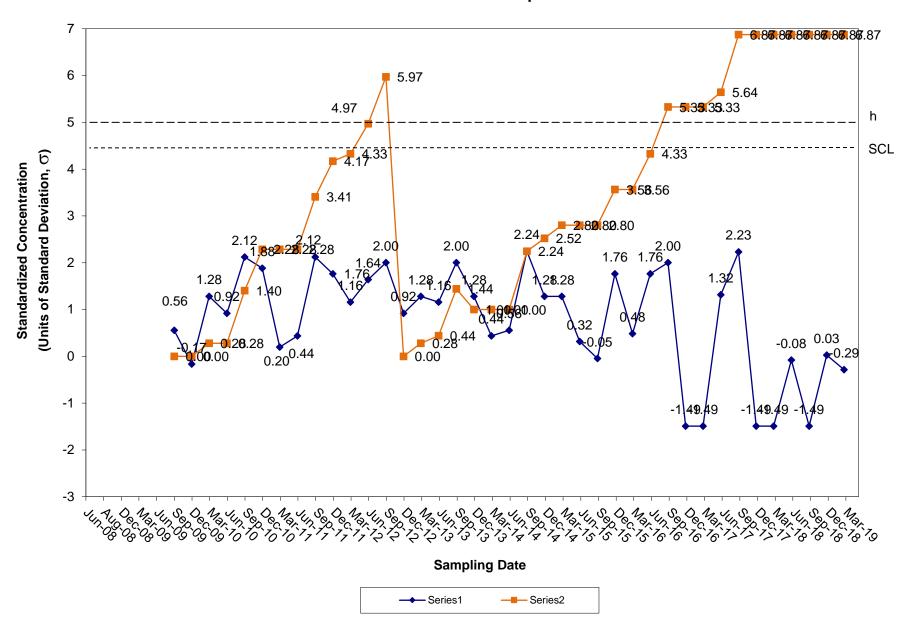
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-15

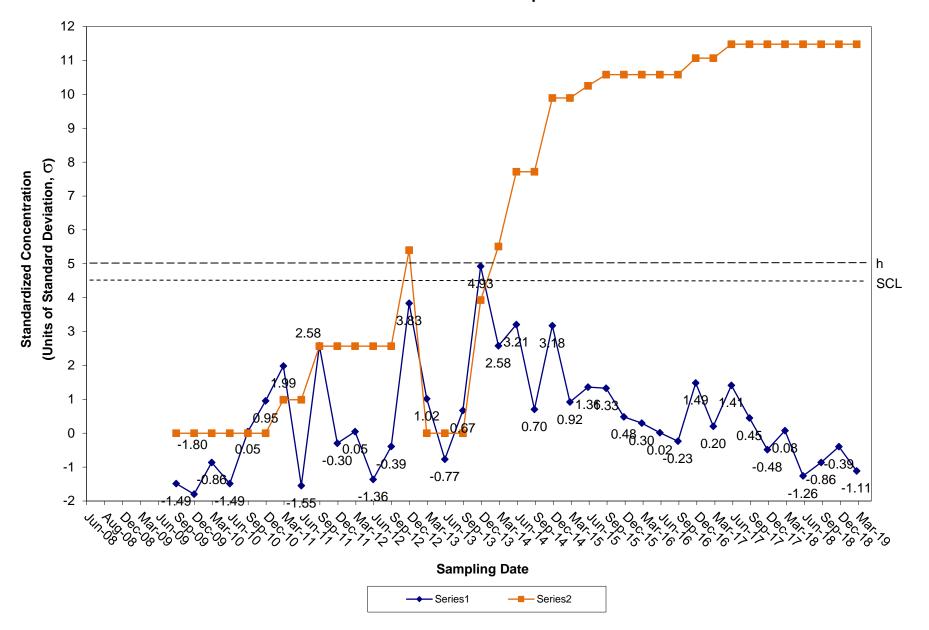

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-15

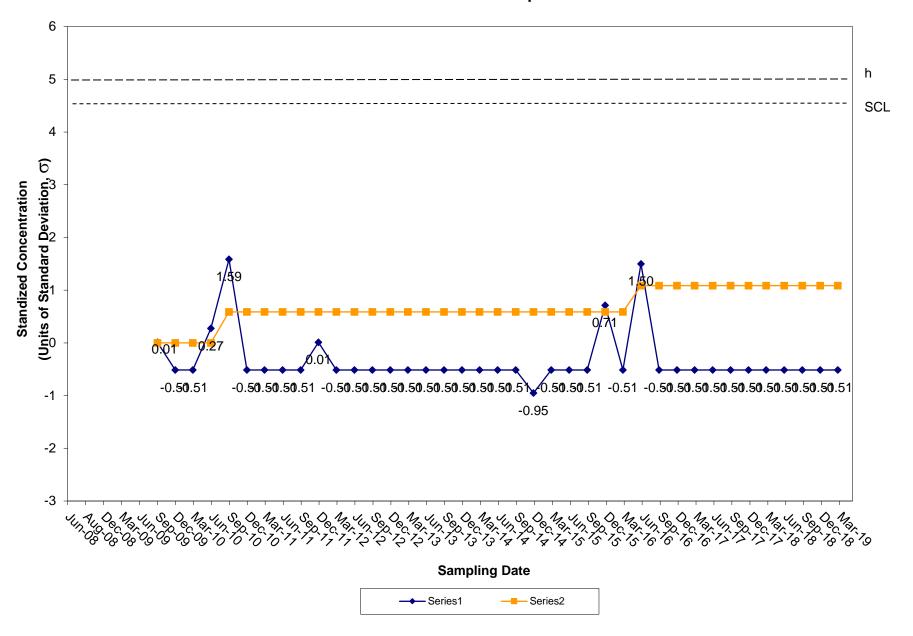

Sampling Date

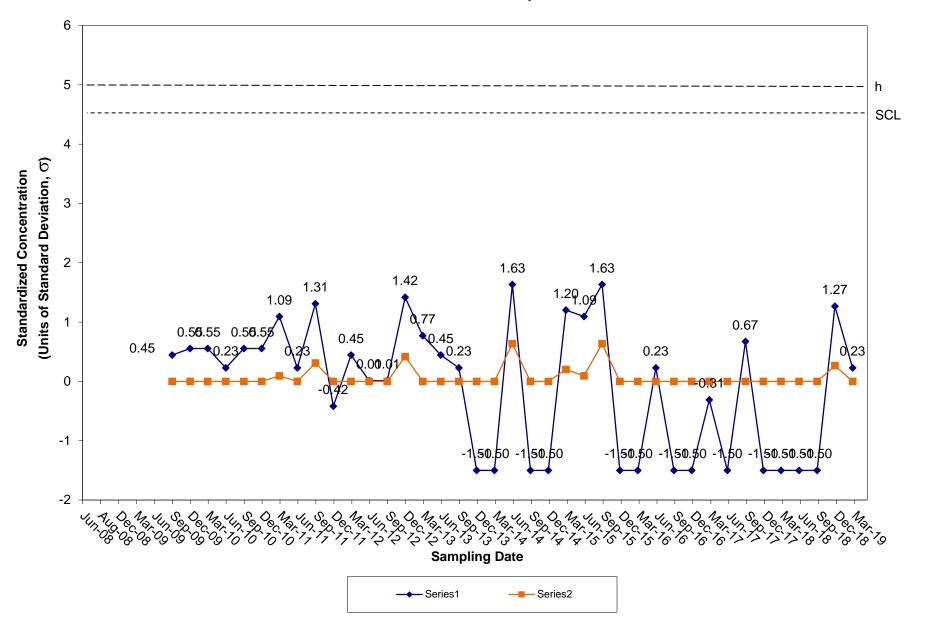

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-15

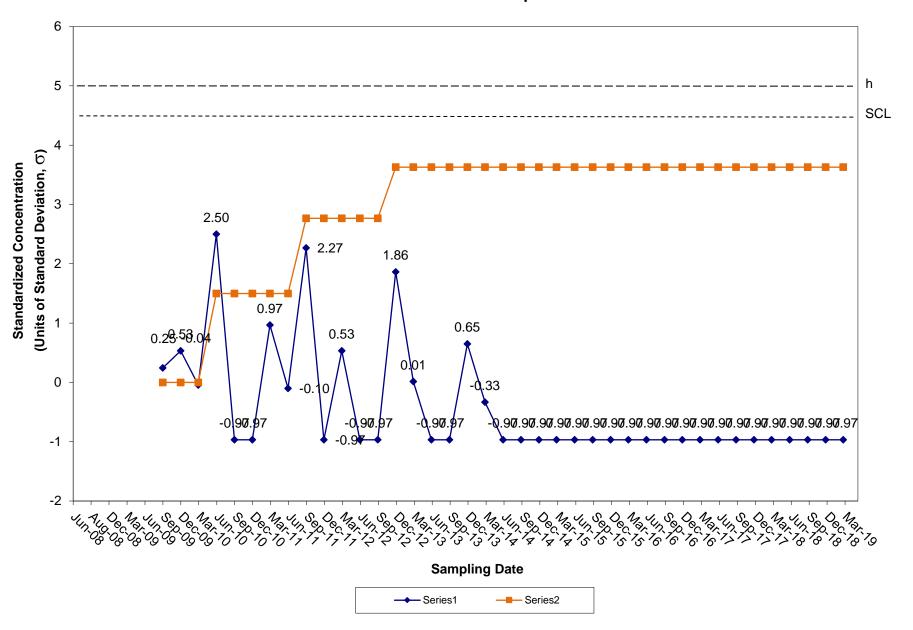

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Complaince Well OW-15

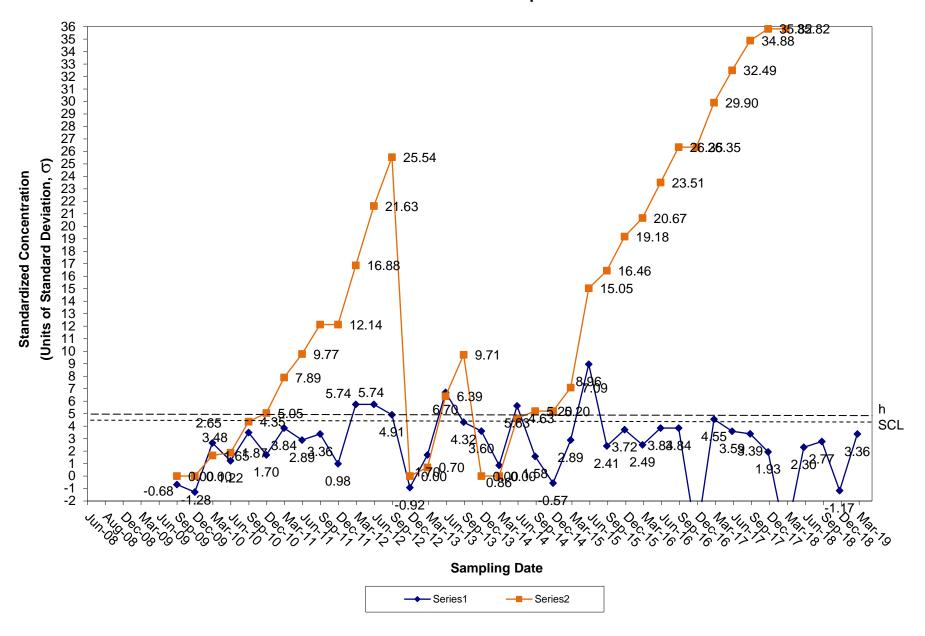

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Complaince Well OW-15

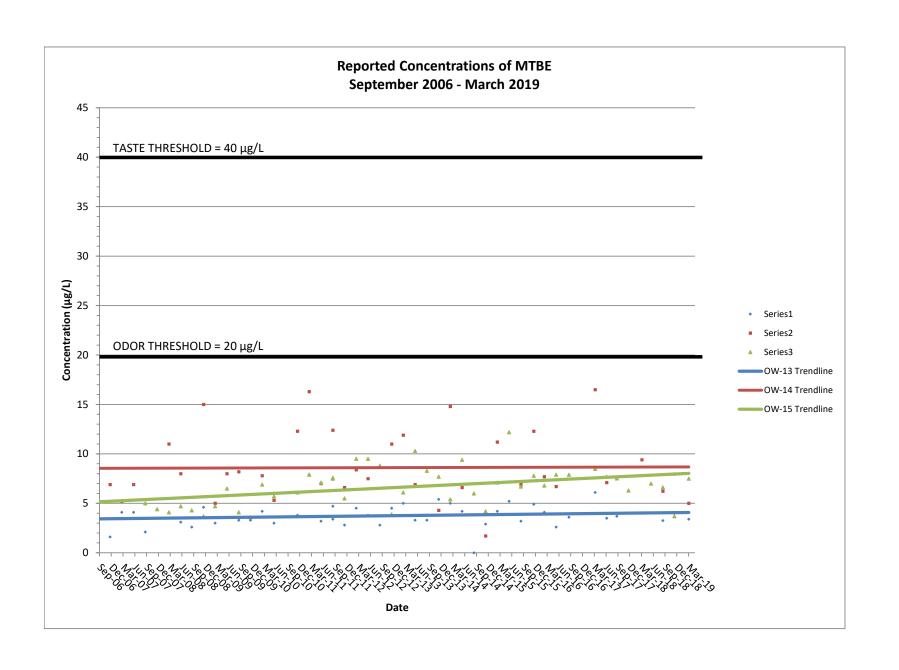

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Complaince Well OW-15


CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Xylenes Tiverton Landfill Groundwater Compliance Well OW-15

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-15

<u>ATTACHMENT NO. 6</u> REPORTED CONCENTRATIONS OF MTBE FIGURE

ATTACHMENT NO. 7 FIELD SAMPLING DATA SHEETS

PROJECT NAME: TIVERTON LANDFILL DATE: 3/28/2019 PARE PROJECT NO.: Sunny 40s 94139.24 WEATHER: **FIELD TESTING RESULTS:** SURFACE WATER LOCATION: SW-1 **READING 1** pH: 6.71 pH UNITS SPEC. COND: 0.72 mS/cm ٥С TEMPERATURE: 5 SW-2 SURFACE WATER LOCATION: **READING 1** pH: 6.12 pH UNITS SPEC. COND: 0.26 mS/cm ٥С TEMPERATURE: 5.8 SURFACE WATER LOCATION: SW-3 **READING 1** pH UNITS pH: 6.13 SPEC. COND: 0.60 mS/cm ٥С TEMPERATURE: 6.2 NOTES: All surface water samples were clear with a brownish tinge.

PROJECT NAME: TIVERTON LANDFILL PARE PROJECT NO.: 94139.24	DATE: WEATHER:	3/28/2019 Sunny 40s
WELL ID: OW-9	DIAMETER	(INCHES): 2
PURGE DATA		
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE: 16 feet 0.6 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing N/A N/A
WATER LEVEL DATA		
DEPTH: 12.5 feet MEASURE POINT: Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS		
READING 1	REAL	DING 2
pH: 5.66 pH UNITS SPEC. COND: 0.145 mS/cm TEMPERATURE: 9.9 °C	5.67 0.143 9.8	pH UNITS mS/cm °C
NOTES:		
Samples were noted as generally clear and lo	w in turbidity based on visua	l inspections of samples.
Samples were collected at 11:30 AM. Methane Reading (% LEL): 0		

PROJECT NAME: PARE PROJECT NO.:			3/28/2019 Sunny 40s
WELL ID: OW-12	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.2 feet 1.30 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.2 +/- 7 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	2.3 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.18 pH UNITS mS/cm 9.2 °C	6.18 0.536 9.1	pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in tur	bidity based on visual insp	ections of samples.
Samples were collected at	12:45 PM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	3/28/2019 Sunny 40s
WELL ID: OW-13	_	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	14.5 feet 1.80 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	3.8 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.57 pH UNITS 1.480 mS/cm 7.6 °C	6.57 1.481 7.6	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in tu	rbidity based on visual insp	ections of samples.
Samples were collected at	5:00 PM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	3/28/2019 Sunny 40s
WELL ID: OW-14	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	10.6 feet 1.2 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing N/A N/A
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	3.6 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.5 pH UNITS mS/cm 7.6 °C	6.5 2.046 7.6	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge supernatant sampled after	•	•	ections of
Samples were collected at	3:45 PM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME: PARE PROJECT NO.:			3/28/2019 Sunny 40s
WELL ID: OW-15	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.8 feet 1.6 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	7 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.61 pH UNITS 1.821 mS/cm 11.2 °C	6.60 1.806 11.0	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in tur	bidity based on visual insp	ections of samples.
Samples were collected at	4:30 PM.		
Methane Reading (% LEL)	: 44		

PROJECT NAME: TIVERTON LANDFILL PARE PROJECT NO.: 94139.24		DATE: WEATHER:	3/28/2019 Sunny 40s
WELL ID: OW-7	_	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	11.8 feet 2.0 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	0 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.49 pH UNITS 1.023 mS/cm 8.2 °C	6.49 1.026 8.3	pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in turb	oidity based on visual insp	ections of samples.
Samples were collected at	2:30 PM.		
Methane Reading (% LEL)	: 0		

		TIVERTON LANDFILL 94139.24	DATE: WEATHER:	3/28/2019 Sunny 40s
WELL ID:	OW-16	_	DIAMETER	(INCHES): 2
PURGE DATA				
WELL DEPTH:		45.8feet	MEASURE POINT:	Top of Casing
PURGE VOLUI PURGER TYPI	` ,	7.3 gallons Peristaltic pump	PURGE RATE (GPM): ELAPSED TIME (MIN):	0.3 +/- 20 +/-
FUNGER ITF		renstante pump	ELAFSED TIME (MIN).	20 +/-
WATER LEVE	_DATA			
DEPTH:		1.3feet	ELEVATION:	See Site Plan
MEASURE PO	INT:	Top of Casing	DEVICE:	Water Level Indicator
FIELD TESTIN	<u>G RESULT</u>	<u>S</u>		
		READING 1	READ	ING 2
pH:		6.58 pH UNITS	6.57	pH UNITS
SPEC. COND:		1.262 mS/cm	1.251	mS/cm
TEMPERATUR	RE:	11.8°C	12.0	_°C
NOTES:				
Samples were	noted as ge	enerally clear and low in tu	rbidity based on visual insp	pections of samples.
Samples were	collected at	3:00 PM.		
Methane Readi	ng (% LEL)	: 0		

October 7, 2019

PARECORP.COM

Mr. Leo Hellested, P.E.
Office of Waste Management
Solid Waste Section
Rhode Island Department of Environmental Management
235 Promenade Street
Providence, Rhode Island 02908-5767

Attn: Mr. Robert Schmidt

Re: Quarterly Monitoring Report

2nd Quarter (June) 2019, Groundwater Monitoring, Sampling, and Analysis

Tiverton Municipal Sanitary Landfill

Pare Project No.: 94139.24

Dear Mr. Hellested:

Enclosed herewith are results of the statistical analysis of groundwater monitoring data for the second quarterly monitoring round of Year 2019 from the Tiverton Landfill (Landfill). Pare Corporation (Pare) has prepared this report on behalf of the Town of Tiverton (Town). Pare conducted the groundwater sampling on June 28, 2019 at the background wells OW-9 and OW-12, and compliance wells OW-7, OW-13, OW-14, OW-15, and OW-16. June 2019 is the first quarterly monitoring period where OW-12 has been designated as a background well.

Groundwater samples were analyzed by New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island for the constituents listed in Appendix A (Detection Monitoring) of the State Solid Waste Regulations. Certified laboratory results data are enclosed and are summarized on attached Tables 1-3.

Groundwater field parameters consisting of temperature, pH, and specific conductivity were measured at each monitoring well, in accordance with the RIDEM-approved Groundwater Monitoring Plan for the Landfill. Field parameters were collected until three successive measurements stabilized within \pm 3% for temperature, \pm 0.1 standard unit for pH, and \pm 3% for specific conductivity, in accordance with US EPA's Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. Field parameters are documented on Field Sampling Data Sheets, which are enclosed.

Combustible gases are monitored at each well and at the top of the Landfill. Each of the well locations, with the exception of OW-15, had no detections of combustible gas observed during this monitoring round. OW-15 had a methane reading of >99% LEL. Combustible gases have not been detected at the Landfill in past quarterly monitoring rounds except for the March 2019 round when methane was first detected at OW-15 with a 44% LEL reading. June 2019 is the second round in which a detectable level of combustible gas has been detected at any groundwater monitoring wells. OW-15 is over 300 feet from the nearest property line and given that no other wells had combustible gases at detectable levels, it does not appear that this occurrence of combustible gases warrants immediate action. Pare will continue to monitor for combustible gases at OW-15, and the other monitoring wells to evaluate if this occurrence is the beginning of an increasing trend in gas at the

8 BLACKSTONE VALLEY PLACE LINCOLN, RI 02865

Mr. Leo Hellested, P.E. (2) October 7, 2019

landfill or a short-term spike in gas concentrations at OW-15. Additionally, Pare will conduct a surficial gas probing survey in the vicinity of OW-15 during the next quarterly monitoring round in September 2019 to further assess the gas trend at the monitoring well.

HUMAN HEALTH THRESHOLD EVALUATION

<u>Background Well OW-9</u> – Six (6) target metals were reported in the groundwater sample collected from OW-9. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-9. No (0) target VOCs were reported above laboratory detection limits at OW-9.

<u>Background Well OW-12</u> – Seven (7) target metals were reported in the groundwater sample collected from OW-12. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-12. No (0) target VOCs were reported above laboratory detection limits at OW-12.

Compliance Well OW-7 – Eleven (11) target metals were reported in the groundwater sample collected from OW-7. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-7. One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-7.

Compliance Well OW-13 – Nine (9) target metals were reported in the groundwater sample collected from OW-13. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-13. Three (3) target VOCs; acetone, chlorobenzene and MTBE; were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-13.

Compliance Well OW-14 – Nine (9) target metals were reported in the groundwater sample collected from OW-14. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-4. Five (5) target VOCs; acetone, benzene, chlorobenzene, 1,4-dichlorobenzene, and MTBE; were reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-14.

Compliance Well OW-15 – Eight (8) target metals were reported in the groundwater sample collected from OW-15. One (1) reported metal; arsenic (0.0205 mg/L); exceeded its MCL (0.01 mg/). Five (5) target VOCs; acetone, benzene, chlorobenzene, 1,4-dichlorobenzene, and MTBE were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-15.

Compliance Well OW-16 – Six (6) target metals were reported in the groundwater sample collected from OW-16. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-16. One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-16.

Mr. Leo Hellested, P.E. (3) October 7, 2019

TOLERANCE INTERVAL STATISTICAL EVALUATION

The Tolerance Interval (TI) approach was used to develop Tolerance Limits (TLs) for each target inorganic constituent (i.e., metals) using the background well analytical results from the eight preceding rounds for which analytical results are available. The background well, OW-9, could not be sampled in several previous monitoring rounds including in the June 2016, September 2016, June 2017, September 2017, and September 2018 monitoring rounds due to dry conditions. Therefore, analytical results of the eight most recent rounds in which samples could be collected were utilized to generate the TLs for this monitoring round, dating back to December 2016. The TI approach is considered inappropriate for analysis of organic constituents and was therefore not performed to evaluate the results of reported VOCs. Table 2 summarizes historical results data from OW-9 used in the calculation of the TLs.

Three (3) metals; arsenic, barium, and cobalt; had reported concentrations that exceeded their corresponding TLs calculated during the June 2019 monitoring round in at least one compliance well. In total, there were ten (10) TL exceedances of these metals in this monitoring round. The TLs and the corresponding compliance well data from this monitoring round are presented in Table 3. Arsenic, barium, and cobalt are routinely detected in groundwater beneath the landfill.

CUSUM METHOD STATISTICAL EVALUATION

The Shewhart-CUSUM Method, a supplemental statistical analysis method used in addition to the TI Method, was performed in accordance with the US EPA documents titled "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Interim Final Guidance, April 1989" and "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Addendum to Interim Final Guidance, July, 1992".

Barium at OW-12 and MTBE at OW-15 exceeded both of their respective Shewhart-CUSUM thresholds during the June 2019 monitoring round.

ASSESSMENT MONITORING

The Shewhart-CUSUM analysis is utilized, along with the Tolerance Limits, to identify when Assessment Monitoring should be performed.

One (1) Appendix B parameter, sulfides, was reported above its respective detection limits in December 2017, as a result, Pare recommended that OW-14 be tested for sulfides in March 2018. Sulfides (0.04 mg/L) were detected in the samples collected from OW-14 in March 2018. Pare attempted to sample OW-14 in the September 2018 monitoring round to test for sulfides; however, a sample was unobtainable due to dry conditions. Pare sampled OW-14 for sulfides in December 2018. Sulfides were not detected in the samples collected at OW-14 during the December 2018 monitoring round.

Pare sampled OW-14 for sulfides in the March 2019 monitoring round. Sulfides were not detected in the samples collected at OW-14 during the March 2019 monitoring round. As such, Pare recommended that sulfides be discontinued from regular monitoring at the Landfill due to the lack of detections.

Pare did not perform Assessment Monitoring in the June 2019 monitoring round.

Mr. Leo Hellested, P.E. (4) October 7, 2019

SURFACE WATER MONITORING

Per the request of the RIDEM in a letter dated January 31, 2019, the Town began incorporating surface water monitoring at surface water locations SW-1, SW-2, and SW-3 into the existing regular quarterly monitoring program. The parameters for surface water monitoring include: Appendix A metals, mercury, tin, iron, ammonia, TKN, total nitrogen, total phosphorus, and hardness. Additionally, field screening was performed at each surface water location to determine temperature, pH, and specific conductivity.

Monitoring Location SW-1 – Eight (8) target metals were detected in the surface water sample collected at SW-1. One (1) metal, iron (10.7 mg/L), exceeded both its human health threshold (0.3 mg/L) and its chronic aquatic life threshold (1 mg/L). Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-1; however, they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Monitoring Location SW-2 – Nine (9) target metals were detected in the surface water sample collected at SW-2. Two (2) metals; lead (0.0009 mg/L) and iron (3.05 mg/L); were detected above thresholds. Lead was detected above its chronic aquatic life threshold (0.00067 mg/L). Iron (3.05 mg/L), exceeded both its human health threshold (0.3 mg/L) and its chronic aquatic life threshold (1 mg/L). Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-2; they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Monitoring Location SW-3 – Nine (9) target metals were detected in the surface water sample collected at SW-3. One (1) metal, iron (4.13 mg/L), was detected above its human health threshold (0.3 mg/L) and its chronic aquatic life threshold (1 mg/L). One (1) parameter, total phosphorous (0.22 mg/L), exceeded its human health threshold (0.025 mg/L). Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-3; however, they did not exceed their given threshold values, or no threshold values have been established for these parameters.

MTBE ANALYSIS

Many of the most recent Assessment Monitoring rounds have been conducted due to MTBE concentrations in groundwater. Reported MTBE concentrations have generally risen since September 2006, as depicted in the attached figure titled Reported Concentrations of MTBE. The figure compares the recent increases in reported MTBE concentrations at OW-13, OW-14 and OW-15 to historical concentrations and drinking water advisories defined in the US EPA document titled "2011 Edition of the Drinking Water Standards and Health Advisories".

Although reported MTBE concentrations appear to be trending slowly upward, MTBE has never been reported above its odor threshold (0.020 mg/L) or its taste threshold (0.040 mg/L). The US EPA has not established a human health advisory concentration for MTBE.

Because the elevated concentrations of MTBE have recently triggered Assessment Monitoring at OW-13, OW-14, and OW-15, and that no Appendix B parameters were reported to a significant degree at these wells, it is Pare's opinion that the increasing trend in MTBE concentrations beneath the Landfill is an isolated phenomenon and not the result of a significant change in groundwater quality beneath the Landfill.

Mr. Leo Hellested, P.E. (5) October 7, 2019

Despite CUSUM values of MTBE at OW-13, OW-14, and OW-15 remaining above their threshold during the June 2019 monitoring round, Pare does not recommend assessment monitoring due to the aforementioned MTBE trend. The lack of Appendix B parameters in the past suggests that the presence of MTBE trend does not indicate an increased likelihood that Appendix B parameters would be present beneath the Landfill.

CONCLUSIONS AND RECOMMENDATIONS

Currently, the Landfill conducts Detection Monitoring for the parameters listed in Appendix A of the State Solid Waste Regulations, as well as mercury and tin. During this monitoring round, three (3) metals; arsenic, barium, and cobalt; exceeded their tolerance limits (TLs) in at least one well. Arsenic exceeded its TL during the previous monitoring round at OW-13 and OW-15. Barium exceeded its TL during the previous monitoring round at OW-7, OW-13, OW-14, and OW-15. Cobalt exceeded its TL during the previous monitoring round at OW-7, OW-13, OW-14, and OW-15. Exceedances in two consecutive monitoring rounds is one of the criteria used to consider performing Assessment Monitoring in subsequent monitoring rounds. Assessment Monitoring criteria were not triggered in the June 2019 monitoring round; therefore, Pare does not recommend Assessment Monitoring be conducted at the Landfill during the upcoming September 2019 monitoring round.

Since the 2016 monitoring periods, a rising trend in detections of antimony at the compliance wells became apparent. Antimony was detected at the background well above its MCL during the December 2017 monitoring round. Antimony was detected at the background well again during the March 2019 monitoring round but below its MCL. Previously, antimony had not been detected at the background well since the September 2011 monitoring round. The detection of antimony at compliance well OW-14 in the June 2017 monitoring round triggered Assessment Monitoring, which was performed in the December 2017 monitoring round. The Assessment Monitoring resulted in detection of one Appendix B parameter, sulfides (0.04 mg/L). However, antimony was not detected at any groundwater well during the December 2017 monitoring period. Analysis of the samples collected from OW-14 during the March 2018 monitoring round indicated another detection of sulfides (0.04 mg/L). Assessment Monitoring was not performed at OW-14 in June 2018 but was performed at OW-13. Sulfides were not detected in the Assessment Monitoring performed at OW-13 during the June 2018 monitoring round. OW-14 was attempted to be sampled again for sulfides in the September 2018 monitoring round; however, a sample was unable to be collected due to dry conditions. OW-14 was sampled again in the December 2018 and March 2019 monitoring rounds, but sulfides were not detected in either round.

The EPA has no MCL for sulfides in groundwater. Water with dissolved hydrogen sulfide will smell musty or swampy around 0.5-1.0 mg/L and Pare did not identify a noticeable smell emanating from the groundwater sample in either round during which the constituent was detected. Hydrogen sulfide gas can occur naturally in groundwater from plant materials rotting underground in anaerobic conditions. Hydrogen sulfide gas could also be resulting from gypsum buried at the Landfill. Sulfides were not detected at OW-14 in the December 2018 and March 2019 monitoring rounds. Therefore, Pare recommended that sulfide monitoring be discontinued at OW-14, which began with the June 2019 monitoring round.

Pare recommended that wells OW-7 and OW-16 be incorporated into the compliance monitoring regimen in the 2017 Annual Groundwater Monitoring Report. Despite OW-7 having several years of sampling data, the sampling rounds were selected on a rotating basis with wells OW-6 and OW-8 for alternate monitoring. Pare recommends that wells OW-7 and OW-16 be sampled for two years, or eight consecutive monitoring rounds,

Mr. Leo Hellested, P.E. (6) October 7, 2019

prior to initiating statistical analysis. The June 2019 monitoring period marks the sixth monitoring round that these wells are to be sampled consistently; therefore, it is estimated that statistical analysis for the bedrock and overburden wells will begin in the March 2020 monitoring round.

Historically, methane has not been an issue at the Landfill. However; the last two monitoring rounds have seen methane detections at monitoring well OW-15, including a >99% LEL reading in June 2019. Pare will continue to monitor OW-15 for methane and will include a surficial gas probing survey in the vicinity of the well in the September 2019 round to further assess the gas trend. The Landfill is expected to begin its multiphase closure in the winter of 2019; if methane detections at OW-15 continue, Pare will evaluate the inclusion of additional gas ventilation features in the closure design.

Should the RIDEM have any questions regarding this letter or the attached data, please feel free to contact the undersigned at (401) 334-4100, thank you.

Very truly yours,

Timothy P. Thies, P.E. Senior Vice President

TPT/TCJ/aby

Attachments

cc: Richard Rogers, Tiverton Public Works Director (w/encl.)
Jay Lambert, Tiverton Landfill Subcommittee (w/encl.)
Jan Reitsma, Tiverton Town Administrator (w/encl.)
Travis C. Johnson, Pare Corporation (w/o encl.)

Z:\JOBS\01 - Earlier Jobs\94139.00\94139.24\June 2019\June 2019 Quarterly Report.doc

<u>ATTACHMENT NO. 1</u> LABORATORY ANALYTICAL DATA REPORT

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9F28003 Client Project: 94139 - Tiverton Landfill

Report Date: 08-July-2019

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com NETLAB Case Number: 9F28003

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 06/28/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9F28003. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9F28003-01	OW-7	Water	06/27/2019	06/28/2019
9F28003-02	OW-9	Water	06/27/2019	06/28/2019
9F28003-03	OW-12	Water	06/27/2019	06/28/2019
9F28003-04	OW-13	Water	06/27/2019	06/28/2019
9F28003-05	OW-14	Water	06/27/2019	06/28/2019
9F28003-06	OW-15	Water	06/27/2019	06/28/2019
9F28003-07	OW-16	Water	06/27/2019	06/28/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-12 (Lab Number: 9F28003-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-13 (Lab Number: 9F28003-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-14 (Lab Number: 9F28003-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8

OW-14 (Lab Number: 9F28003-05) (continued)

<u>Analysis</u>	<u>Method</u>
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-15 (Lab Number: 9F28003-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-16 (Lab Number: 9F28003-07)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-7 (Lab Number: 9F28003-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

OW-9 (Lab Number: 9F28003-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Sample: OW-7 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	0.0002	0.0001
7440-38-2	Arsenic	200.8	0.0001	0.0001
7440-39-3	Barium	200.8	0.027	0.001
7440-41-7	Beryllium	200.8	ND	0.0001
7440-43-9	Cadmium	200.8	0.0005	0.0001
7440-47-3	Chromium	200.8	0.0008	0.0001
7440-48-4	Cobalt	200.8	0.0078	0.0001
7440-50-8	Copper	200.8	0.002	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.009	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	0.0009	0.0005
7440-66-6	Zinc	200.8	0.007	0.001
7439-92-1	Lead	200.8	0.0008	0.0001

Sample: OW-9 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	ND	0.0001
7440-38-2	Arsenic	200.8	ND	0.0001
7440-39-3	Barium	200.8	0.006	0.001
7440-41-7	Beryllium	200.8	0.0001	0.0001
7440-43-9	Cadmium	200.8	0.0001	0.0001
7440-47-3	Chromium	200.8	0.0019	0.0001
7440-48-4	Cobalt	200.8	ND	0.0001
7440-50-8	Copper	200.8	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	ND	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	ND	0.0005
7440-66-6	Zinc	200.8	0.003	0.001
7439-92-1	Lead	200.8	0.0004	0.0001

Sample: OW-12 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	ND	0.0001
7440-38-2	Arsenic	200.8	ND	0.0001
7440-39-3	Barium	200.8	0.024	0.001
7440-41-7	Beryllium	200.8	ND	0.0001
7440-43-9	Cadmium	200.8	0.0004	0.0001
7440-47-3	Chromium	200.8	0.0001	0.0001
7440-48-4	Cobalt	200.8	0.0006	0.0001
7440-50-8	Copper	200.8	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.008	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	ND	0.0005
7440-66-6	Zinc	200.8	0.001	0.001
7439-92-1	Lead	200.8	0.0003	0.0001

Sample: OW-13 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	ND	0.0001
7440-38-2	Arsenic	200.8	0.0069	0.0001
7440-39-3	Barium	200.8	0.096	0.001
7440-41-7	Beryllium	200.8	ND	0.0001
7440-43-9	Cadmium	200.8	0.0007	0.0001
7440-47-3	Chromium	200.8	0.0007	0.0001
7440-48-4	Cobalt	200.8	0.0111	0.0001
7440-50-8	Copper	200.8	0.003	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.011	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	ND	0.0005
7440-66-6	Zinc	200.8	0.007	0.001
7439-92-1	Lead	200.8	0.0005	0.0001

Sample: OW-14 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	0.0001	0.0001
7440-38-2	Arsenic	200.8	0.0036	0.0001
7440-39-3	Barium	200.8	0.199	0.001
7440-41-7	Beryllium	200.8	ND	0.0001
7440-43-9	Cadmium	200.8	ND	0.0001
7440-47-3	Chromium	200.8	0.0006	0.0001
7440-48-4	Cobalt	200.8	0.0058	0.0001
7440-50-8	Copper	200.8	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.011	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	0.0006	0.0005
7440-66-6	Zinc	200.8	0.005	0.001
7439-92-1	Lead	200.8	0.0002	0.0001

Sample: OW-15 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	ND	0.0001
7440-38-2	Arsenic	200.8	0.0205	0.0001
7440-39-3	Barium	200.8	0.148	0.001
7440-41-7	Beryllium	200.8	ND	0.0001
7440-43-9	Cadmium	200.8	ND	0.0001
7440-47-3	Chromium	200.8	0.0009	0.0001
7440-48-4	Cobalt	200.8	0.0124	0.0001
7440-50-8	Copper	200.8	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.025	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	0.0007	0.0005
7440-66-6	Zinc	200.8	0.004	0.001
7439-92-1	Lead	200.8	0.0003	0.0001

Sample: OW-16 Case Number: 9F28003

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	200.8	ND	0.0001
7440-38-2	Arsenic	200.8	ND	0.0001
7440-39-3	Barium	200.8	0.008	0.001
7440-41-7	Beryllium	200.8	0.0002	0.0001
7440-43-9	Cadmium	200.8	0.0002	0.0001
7440-47-3	Chromium	200.8	ND	0.0001
7440-48-4	Cobalt	200.8	0.0009	0.0001
7440-50-8	Copper	200.8	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	200.8	0.002	0.001
7782-49-2	Selenium	200.8	ND	0.005
7440-22-44	Silver	200.8	ND	0.0001
7440-28-0	Thallium	200.8	ND	0.0001
7440-34-5	Tin	200.8	ND	0.005
7440-62-2	Vanadium	200.8	ND	0.0005
7440-66-6	Zinc	200.8	0.004	0.001
7439-92-1	Lead	200.8	ND	0.0001

Case Number: 9F28003

Sample: OW-7 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile Methacrylonitrile	ND ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-7 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.01	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	102.02	70-130
1,2-Dichloroethane d4	104.54	70-130
4 BFB	95.14	70-130

Case Number: 9F28003

Sample: OW-9 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-9 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	100.26	70-130
1,2-Dichloroethane d4	105.52	70-130
4 BFB	95.84	70-130

Case Number: 9F28003

Sample: OW-12 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-12 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	103.40	70-130
1,2-Dichloroethane d4	112.88	70-130
4 BFB	95.26	70-130

Case Number: 9F28003

Sample: OW-13 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	16.88	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	4.10	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-13 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.30	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	97.14	70-130
1,2-Dichloroethane d4	104.50	70-130
4 BFB	94.08	70-130

Case Number: 9F28003

Sample: OW-14 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	20.96	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	2.24	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	10.74	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-14 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.04	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	5.07	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	100.14	70-130
1,2-Dichloroethane d4	111.26	70-130
4 BFB	95.48	70-130

Case Number: 9F28003

Sample: OW-15 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	19.19	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	1.94	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	14.40	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-15 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.64	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	9.38	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	101.82	70-130
1,2-Dichloroethane d4	110.44	70-130
4 BFB	96.30	70-130

Case Number: 9F28003

Sample: OW-16 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-16 Case Number: 9F28003

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	4.90	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	100.58	70-130
1,2-Dichloroethane d4	104.64	70-130
4 BFB	94.48	70-130

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

4413924 TIVERTON	N LANDFILL BUARTERLY	, k			ūα			
CLIENT PARE CORF	d	<			шоша	12/26		
sole read	Dale comp. Com	С ЭШО	ωO Ο⊢Σπ		3/ 			9
DATE TIME O G P P P P P P P P P P P P P P P P P P	SAMPLE I.D.	⊃ <i>w</i>		CONTAINERS	> w	The state of the s	HEI VER	REMARKS
12/2	7 - ~	*		2 #				
	1 m -d	•			\$			
	CW-12							
	Dr- 13	•						
	0W \ 14	•						
•	OW ~ 15	•		18				
	dw. 18	•		د				
	•							
•								
Sampled by: (Signatúre)	Date/Time Received by: (Signature)	ıture)		Date/Time	Laboratory Remarks: Temp. received: Cooled \Box	rks:	Special Instructions: List Specific Detection Limit Requirements:	
Relinquisherby; (Signature)	Date/Time Received by: (Signature)	ature)	4	4 (28) K 9:35			X.	٥,
Relinquished by: Signature)	19 14	Received for Laboratory by: (Signature)	e	Date/Time				
)		,)			Turnaround (Business Days)	s)

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9F28004 Client Project: 94139.01 - Tiverton Landfill Surface Water

Report Date: 12-July-2019

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 06/28/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9F28004. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
0520004 01	CW 1	14/a.h.a.u	06/27/2010	06/20/2010
9F28004-01	SW-1	Water	06/27/2019	06/28/2019
9F28004-02	SW-2	Water	06/27/2019	06/28/2019
9F28004-03	SW-3	Water	06/27/2019	06/28/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SW-1 (Lab Number: 9F28004-01)

<u>Method</u>
SM4500-NH3-D
EPA 200.8
SM3120-B
EPA 200.8
SM3120-B
EPA 7470A
EPA 200.8
4500-N03-E
EPA 200.8
EPA 200.8
EPA 200.8
EPA 200.8
SM4500NH3-D
Calculation
SM4500-P-E
EPA 200.8
EPA 200.8

SW-2 (Lab Number: 9F28004-02)

<u>Method</u>
SM4500-NH3-D
EPA 200.8
SM3120-B
EPA 200.8
SM3120-B
EPA 7470A
EPA 200.8
4500-N03-E
EPA 200.8
EPA 200.8
EPA 200.8

SW-2 (Lab Number: 9F28004-02) (continued)

<u>Analysis</u>	<u>Method</u>
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-3 (Lab Number: 9F28004-03)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500NH3-D
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E
Vanadium	EPA 200.8
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Soil Survey Laboratory Methods Manual, USDA/NCRS, 2014

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Wet Chemistry

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

Results: General Chemistry

Sample: SW-1

Lab Number: 9F28004-01 (Water)

		Reporting				
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.1		0.1	mg/L	07/03/19	07/03/19
Kjeldahl Nitrogen	0.4		0.1	mg/L	07/05/19	07/05/19
Nitrate and Nitrite as N	ND		0.03	mg/L	07/08/19	07/08/19
Total Phosphorous	ND		0.10	mg/L	07/03/19	07/03/19
Total Nitrogen	0.400		0.100	ma/L	07/11/19	07/11/19

Results: General Chemistry

Sample: SW-2

Lab Number: 9F28004-02 (Water)

		Reporting				
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.4		0.1	mg/L	07/03/19	07/03/19
Kjeldahl Nitrogen	1.0		0.5	mg/L	07/08/19	07/08/19
Nitrate and Nitrite as N	ND		0.03	mg/L	07/08/19	07/08/19
Total Phosphorous	ND		0.20	mg/L	07/03/19	07/03/19
Total Nitrogen	1.00		0.100	mg/L	07/11/19	07/11/19

Results: General Chemistry

Sample: SW-3

Lab Number: 9F28004-03 (Water)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.2		0.1	mg/L	07/03/19	07/03/19
Kjeldahl Nitrogen	0.5		0.1	mg/L	07/05/19	07/05/19
Nitrate and Nitrite as N	ND		0.03	mg/L	07/08/19	07/08/19
Total Phosphorous	0.22		0.20	mg/L	07/03/19	07/03/19
Total Nitrogen	0.500		0.100	mg/L	07/11/19	07/11/19

Results: Total Metals

Sample: SW-1

Lab Number: 9F28004-01 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Total Hardness	204	0.125	mg/L	07/01/19	07/01/19		
Antimony	ND	0.0001	mg/L	07/01/19	07/01/19		
Arsenic	0.0009	0.0001	mg/L	07/01/19	07/01/19		
Barium	0.068	0.001	mg/l	07/01/19	07/01/19		
Beryllium	ND	0.0001	mg/L	07/01/19	07/01/19		
Cadmium	ND	0.0001	mg/L	07/01/19	07/01/19		
Calcium	62.2	0.05	mg/L	07/01/19	07/01/19		
Chromium	0.0005	0.0001	mg/L	07/01/19	07/01/19		
Cobalt	0.0014	0.0001	mg/L	07/01/19	07/01/19		
Copper	ND	0.001	mg/l	07/01/19	07/01/19		
Iron	10.7	0.001	mg/l	07/01/19	07/01/19		
Magnesium	11.8	0.05	mg/L	07/01/19	07/01/19		
Mercury	ND	0.0002	mg/L	07/02/19	07/02/19		
Nickel	0.003	0.001	mg/l	07/01/19	07/01/19		
Selenium	ND	0.005	mg/L	07/01/19	07/01/19		
Silver	ND	0.0001	mg/L	07/01/19	07/02/19		
Thallium	ND	0.0001	mg/L	07/01/19	07/01/19		
Tin	ND	0.005	mg/l	07/01/19	07/01/19		
Vanadium	ND	0.0005	mg/L	07/01/19	07/01/19		
Zinc	0.006	0.001	mg/l	07/01/19	07/01/19		
Lead	0.0003	0.0001	mg/L	07/01/19	07/01/19		

Results: Total Metals

Sample: SW-2

Lab Number: 9F28004-02 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Total Hardness	30.1	0.125	mg/L	07/01/19	07/01/19		
Antimony	ND	0.0001	mg/L	07/01/19	07/01/19		
Arsenic	0.0006	0.0001	mg/L	07/01/19	07/01/19		
Barium	0.011	0.001	mg/l	07/01/19	07/01/19		
Beryllium	ND	0.0001	mg/L	07/01/19	07/01/19		
Cadmium	ND	0.0001	mg/L	07/01/19	07/01/19		
Calcium	7.51	0.05	mg/L	07/01/19	07/01/19		
Chromium	0.0007	0.0001	mg/L	07/01/19	07/01/19		
Cobalt	0.0025	0.0001	mg/L	07/01/19	07/01/19		
Copper	ND	0.001	mg/l	07/01/19	07/01/19		
Iron	3.05	0.001	mg/l	07/01/19	07/01/19		
Magnesium	2.75	0.05	mg/L	07/01/19	07/01/19		
Mercury	ND	0.0002	mg/L	07/02/19	07/02/19		
Nickel	0.002	0.001	mg/l	07/01/19	07/01/19		
Selenium	ND	0.005	mg/L	07/01/19	07/01/19		
Silver	ND	0.0001	mg/L	07/01/19	07/02/19		
Thallium	ND	0.0001	mg/L	07/01/19	07/01/19		
Tin	ND	0.005	mg/l	07/01/19	07/01/19		
Vanadium	0.0013	0.0005	mg/L	07/01/19	07/01/19		
Zinc	0.006	0.001	mg/l	07/01/19	07/01/19		
Lead	0.0009	0.0001	mg/L	07/01/19	07/01/19		

Results: Total Metals

Sample: SW-3

Lab Number: 9F28004-03 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	40.7	0.125	mg/L	07/01/19	07/01/19
Antimony	ND	0.0001	mg/L	07/01/19	07/01/19
Arsenic	0.0006	0.0001	mg/L	07/01/19	07/01/19
Barium	0.014	0.001	mg/l	07/01/19	07/01/19
Beryllium	ND	0.0001	mg/L	07/01/19	07/01/19
Cadmium	ND	0.0001	mg/L	07/01/19	07/01/19
Calcium	10.8	0.05	mg/L	07/01/19	07/01/19
Chromium	0.0007	0.0001	mg/L	07/01/19	07/01/19
Cobalt	0.0023	0.0001	mg/L	07/01/19	07/01/19
Copper	ND	0.001	mg/l	07/01/19	07/01/19
Iron	4.13	0.001	mg/l	07/01/19	07/01/19
Magnesium	3.33	0.05	mg/L	07/01/19	07/01/19
Mercury	ND	0.0002	mg/L	07/02/19	07/02/19
Nickel	0.002	0.001	mg/l	07/01/19	07/01/19
Selenium	ND	0.005	mg/L	07/01/19	07/01/19
Silver	ND	0.0001	mg/L	07/01/19	07/02/19
Thallium	ND	0.0001	mg/L	07/01/19	07/01/19
Tin	ND	0.005	mg/l	07/01/19	07/01/19
Vanadium	0.0012	0.0005	mg/L	07/01/19	07/01/19
Zinc	0.006	0.001	mg/l	07/01/19	07/01/19
Lead	0.0005	0.0001	mg/L	07/01/19	07/01/19

Quality Control

General Chemistry

		01	Reporting		Spike	Source	0/ 055	%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B9G0178 - Ammonia										
Blank (B9G0178-BLK1)					Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	ND		0.1	mg/L						
Blank (B9G0178-BLK2)					Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	ND		0.1	mg/L						
LCS (B9G0178-BS1)					Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	1.1		0.1	mg/L	1.00		106	90-110		
LCS (B9G0178-BS2)					Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	1.0		0.1	mg/L	1.00	, , , , ,	96.3	90-110		
Duplicate (B9G0178-DUP1)	9	Source: 9	G01072-01		Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	ND		0.1	mg/L	·	ND				20
Matrix Spike (B9G0178-MS1)	9	Source: 9	G01072-01		Prepared 8	& Analyzed: 0	7/03/19			
Ammonia	1.1		0.1	mg/L	1.00	ND	112	80-120		
Batala BOGOZZO Tatalaharakata										
Batch: B9G0220 - Total phosphate					D d 0) A	7/02/10			
Blank (B9G0220-BLK1)	NB		0.00		Prepared 8	& Analyzed: 0	//03/19			
Total Phosphorous	ND		0.02	mg/L						
Blank (B9G0220-BLK2)					Prepared 8	& Analyzed: 0	7/03/19			
Total Phosphorous	ND		0.02	mg/L						
LCS (B9G0220-BS1)					Prepared 8	& Analyzed: 0	7/03/19			
Total Phosphorous	1.04		0.02	mg/L	1.00	•	104	90-110		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9G0220 - Total phospi	hate (Continu	ued)								
LCS (B9G0220-BS2)					Prepared	& Analyzed: 0	7/03/19			
Total Phosphorous	1.04		0.02	mg/L	1.00		104	90-110		
Duplicate (B9G0220-DUP1)	S	Source: 9	F27014-02		Prepared	& Analyzed: 0	7/03/19			
Total Phosphorous	ND		0.02	mg/L		ND				20
Matrix Spike (B9G0220-MS1)	S	Source: 9	F27014-02		Prepared	& Analyzed: 0	7/03/19			
Total Phosphorous	1.08		0.02	mg/L	1.00	ND	108	80-120		
Batch: B9G0295 - TKN										
Blank (B9G0295-BLK1)					Propared	& Analyzed: 0	7/05/10			
Kjeldahl Nitrogen	ND		0.1	mg/L	rrepared	x Analyzeu. 0	7/03/13			
Blank (B9G0295-BLK2)					Prepared	& Analyzed: 0	7/05/19			
Kjeldahl Nitrogen	ND		0.1	mg/L						
- · / / / /										
Batch: B9G0335 - General Che	mistry				Durananada	0. 4	7/00/10			
Blank (B9G0335-BLK1) Nitrate and Nitrite as N	ND		0.03	ma/l	Prepared	& Analyzed: 0	//08/19			
- Induce and Multe as IV	IND		0.05	mg/L						
Blank (B9G0335-BLK2)					Prepared	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	ND		0.03	mg/L						
Blank (B9G0335-BLK3)					Prepared	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	ND		0.03	mg/L						

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9G0335 - General Chei	mistry (Cont	inued)								
LCS (B9G0335-BS1)					Prepared 8	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	0.80		0.03	mg/L	0.800		99.4	90-110		
LCS (B9G0335-BS2)					Prepared 8	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	0.80		0.03	mg/L	0.800		99.6	90-110		
LCS (B9G0335-BS3)					Prepared 8	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	0.74		0.03	mg/L	0.800	-	91.9	90-110		
Duplicate (B9G0335-DUP1)	9	Source: 9	F28004-01		Prepared 8	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	ND		0.03	mg/L		ND				200
Matrix Spike (B9G0335-MS1)	9	Source: 9	F28004-01		Prepared 8	& Analyzed: 0	7/08/19			
Nitrate and Nitrite as N	0.60		0.03	mg/L	0.800	ND	74.9	80-120		
Batala BOCO 427 TVN										
Batch: B9G0427 - TKN					Duamano d C) Amalumad: 0:	7/00/10			
Blank (B9G0427-BLK1) Kjeldahl Nitrogen	ND		0.1	ma/l	Prepared 8	& Analyzed: 0	//08/19			
Njeluarii Muogeri	ND		0.1	mg/L						
Blank (B9G0427-BLK2)					Prepared 8	& Analyzed: 0	7/08/19			
Kjeldahl Nitrogen	ND		0.1	mg/L						

Quality Control (Continued) **Total Metals** %REC RPD Reporting Spike Source Analyte Result Qual Limit Units Result %REC Limits RPD Limit Level Batch: B9G0011 - Hot plate acid digestion waters Blank (B9G0011-BLK1) Prepared & Analyzed: 07/01/19 Antimony ND 0.0001 mg/L Arsenic ND 0.0001 mg/L 0.0001 Silver ND mg/L 0.0001 Beryllium ND mg/L Nickel ND 0.001 mg/l Cadmium ND 0.0001 mg/L 0.05 Calcium ND mg/L Iron ND 0.001 mg/l Barium ND 0.001 mg/l Magnesium ND 0.05 mg/L Chromium ND 0.0001 mg/L Vanadium 0.0005 ND mg/L Tin ND 0.005 mg/l Zinc ND0.001 mg/l Thallium ND 0.0001 mg/L ND 0.001 Copper mg/l ND 0.0001 Cobalt mg/L Selenium ND0.005 mg/L ND 0.0001 Lead mg/L LCS (B9G0011-BS1) Prepared & Analyzed: 07/01/19 Calcium 11.4 0.05 mg/L 10.0 114 85-115 Magnesium 11.5 0.05 mg/L 10.0 115 85-115 LCS (B9G0011-BS2) Prepared & Analyzed: 07/01/19 0.206 0.001 mg/l 0.200 103 85-115 0.001 Copper 0.192 mg/l 0.200 96.2 85-115 0.0206 0.0001 0.0200 mg/L 103 Chromium 85-115 Cobalt 0.0199 0.0001 mg/L 0.0200 99.4 85-115 Nickel 0.199 0.001 mg/l 0.200 99.5 85-115 0.0001 Silver 0.0201 mg/L 0.0200 101 85-115 0.0001 Arsenic 0.0184 mg/L 0.0200 92.1 85-115

0.001

0.0001

0.0001

0.0001

0.005

0.0001

0.0005

0.001

0.005

0.0001

mg/l

0.200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.200

0.0200

0.0200

104

95.4

95.1

98.1

103

102

102

90.2

92.7

101

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

85-115

0.207

0.0191

0.0190

0.0196

0.021

0.0203

0.0205

0.180

0.019

0.0202

Barium

Beryllium

Cadmium

Antimony

Thallium

Vanadium

Selenium

Tin

Zinc

Lead

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATOR

West Warwick, RI 02893

1-888-863-8522

59 Greenhill Street

REMARKS Turnaround (Business Days). Special Instructions: List Specific Detection Limit Requirements: The subcontracts the following tests: Radiologicals, Radon, Asbestbs, UCMRs, Rerchibrate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH Laboratory Remarks: Temp. received: ______Cooled □ 6 July 1935 CONTAINERS Date/Time Š P S о⊢тшс --os ∢α⊃mo⊃« (INTRETON PLIERUATE MANITORING Received by: (Signature) SAMPLE I.D. 128 9:25 SW- 2 52-SW-PROJECT NAME/LOCATION © EC < B ሃ OOZL Sampled by: (Signature) 94/34.01 CLIENT TIME INVOICE TO: REPORT TO: PROJ. NO. DATE

ATTACHMENT NO. 2 ANALYTICAL SUMMARY TABLES

TABLE 1 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL 0W-7 Concentration (expressed in same units as Threshold Value)

	Threshold											(-					,									
Parameter	Value					JUN '18		NOV '17	SEP '17	MAR '17		SEP '15		DEC '14		SEP '13	MAR '13	SEP '12	MAR '12	JUN '11	MAR '11	SEP '10	JUN '10	SEP '09	JUN '07	SEP '05
Antimony	0.006 mg/L ¹	2E-04	2E-04	0.001	ND	ND	ND	ND	ND	0.0070	ND	ND	ND	NT	ND	ND	ND	ND	ND	0.0250	ND	ND	ND	ND	ND	ND
Arsenic	0.01 mg/L ¹		0.0002	ND	ND	0.0100	ND	ND	ND	ND	0.0070	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND	ND	ND	ND
Barium	2 mg/L	0.0270					0.0380	0.0350	0.0330	0.0380	0.0390	0.0300	0.0330	NT	0.0310	0.0200	0.0310	0.0260	0.0280	0.0350	0.0398	0.0375	0.0370	0.0310	0.0340	0.0240
Beryllium	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND ⁶	ND ⁶	ND	ND	ND	ND
Cadmium	0.005 mg/L	5E-04	7E-04	ND	0.004	ND	ND	ND	ND	0.0010	ND	0.0010	ND	NT	0.0010	ND	ND	0.0050	ND	ND	0.0012	0.0419	0.0410	ND	ND	ND
Chromium	0.1 mg/L ⁵	0.0008	0.0011	0.0040	0.0180	0.0040	0.0050	0.0050	0.0040	0.0060	ND 0.0280	ND 0.0200	ND 0.0250	NT NT	ND 0.0220	ND 0.0130	ND 0.0250	ND 0.0160	0.0010	0.0080	ND 0.0353	0.0054	0.0048	0.0530	ND 0.0200	ND 0.0190
Cobalt	1.3 mg/L ¹	0.0078	0.0090	0.0200 ND	0.0220	0.0150 ND	0.0190 ND	0.0180		0.0250	0.0280	0.0200	0.0250	NT	0.0220	0.0130	0.0250 ND	0.0160	0.0200	0.0200	0.0353	0.0229	0.0250	0.0250	0.0200	0.0190 ND
Copper	0.015 mg/L ¹	8F-04	0.002	ND	0.03	ND	ND	ND	ND ND	ND	ND	0.0080	0.0250	NT	0.0160	0.0040	0.0020	0.0000	0.0040	0.0390	0.0036	0.2180	0.0060	0.0058	0.0098	ND
Nickel	0.013 mg/L ²	0.0090			0.000		0.0210	0.0210	0.0190	0.0250	ND	0.0010	0.0030	NT	0.0000	0.0040	0.0020	0.0020	0.0020	0.0400	0.0000	0.0074	0.0000	0.0390	0.0042	0.0220
Selenium	0.05 mg/L ¹	ND	ND.	0.005	ND.	ND.	0.0100	ND	0.0030	ND	0.1070	0.0070	0.1880	NT	0.1830	0.1410	0.1800	0.1920	0.2260	0.0340	ND	ND	ND	0.0120	0.0110	0.0140
Silver	0.1 mg/L ²	ND	2E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0054	ND	ND
Thallium	0.002 mg/L ¹	ND	ND	3E-04	ND	ND	0.0003	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	0.0032	ND	ND	0.0420	0.0440	ND
Tin	22 mg/L ⁵	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	0.0060	ND	ND	ND	ND	ND	ND	ND '	ND	ND	ND
Vanadium	0.26 mg/L ⁵	9E-04	0.001	ND	0.016	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	0.0170	ND	0.0051	0.0072	0.0230	0.0240	ND
Zinc	5 mg/L ³	0.0070	0.0060	0.0180	0.0850	0.0140	0.0180	0.0200	0.0120	0.0210	0.0050	0.0120	0.0060	0.0060	190.00	ND	0.0150	0.0100	0.0130	ND	0.0250	0.0472	0.0380	0.0120	0.0110	0.0160
Mercury	0.002 mg/L1	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	610 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrate	0.039 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	80 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	90 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 ug/l'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride Chlorobenzene	5 ug/l ¹	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	NT NT	ND	ND ND	ND ND	ND	ND ND	ND	ND 2.0	ND	ND	ND	ND 27	ND
Chlorodibromomethane	100 ug/l ¹ 80 ug/l ¹	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	NT	ND ND	ND	ND	ND ND	ND	1.0 ND	ND	ND ND	1.4 ND	1.8 ND	ND	1.7 ND
Chloroform	80 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	22	ND	1.3	16	1.5	3.8	ND
Chloromethane	30 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.2 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane	0.05 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichlo-2-butene	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	70 ug/l'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethylene	100 ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 ug/l¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 ug/l1	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	NT NT	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/l ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	5 ug/1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.1.2-Tetrachloroethane	70 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 ug/l1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroflouromethane	2000 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 ug/l1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 ug/l ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 ug/l°	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 ug/l ⁴	3.01	4.0	6.38	4.87	3.56	6.80	5.9	5.36	10.3	8.8	ND	ND	NT	9.7	5.6	11.9	8.0	11.2	10.7	15.7	7.2	8.2	9.0	12.0	7.4
Methyl ethyl ketone(2-Butanone)	4000 ug/l²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	ug/l	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	NT NT	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND
4-Methyl-2-pentanone Styrene	ug/l 100 ug/l ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.9	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.2.3-Trichloropropane	40 ug/l ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	NT	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl acetate	410 ug/l ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND
Note: Low flow purging and sampli							.,,,		110	.,,,	.,,,	.,,,	.,,,			.,,,	.,,,	.,,,,	110	.,,,,						.,,,

= Exceeded MCL

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONTORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-12 Concentration (Expressed in same units as Threshold Value)

Parameter.	Threshold	JUN '19	MAR '19	DEC '18	SEP '18	JUN 18	MAR:18	DEC '17	SEP '17	JUN '17	MAR '17	DEC 16	SEP 16	JUN '16	MAR 16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN 14	MAR '14	DEC '13	SEPT 12	JUN 13	MAR 13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR:11	DEC '10	SEPT 10
Antimory	Value 0.006 mg/L ¹	ND	ND	ND	ND	0.001	ND	0.0210	ND	0.0010	0.0250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND	ND	0.0100	0.0800	ND	ND	ND
Arsenic	0.010 mg/L ¹	ND ND	ND ND	ND	ND	0.001	ND ND	0.0210	ND	0.0010	ND	ND	ND ND	0.0060	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0300	ND ND	ND	ND ND
Barium	2 ma/L ¹	0.024	0.02	0.02	0.023	0.02	0.0170	0.0000	0.0260	0.0000	0.0410	0.0260	0.0670	0.0360	0.0200	0.0260	0.0250	0.0190	0.0600	0.0160	0.0210	0.0120	0.0140	0.0130	0.0150	0.0080	0.0130	0.0180		0.0160	0.0160	0.0100	0.0280	0.0130	0.0113	0.0151	0.0156
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND
Cadmium	0.005 mg/L ¹	0.0004	0.0004	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	0.1 mg/L ¹	0.0001	ND	ND	0.002	ND	ND	ND	0.0030	0.0010	0.0040	ND	0.0180	0.0130	ND	0.0020	ND	ND	ND	ND	0.0020	0.0020	0.0020	0.0010	0.0020	ND	0.0020	ND	ND	ND	0.0010	ND	ND	ND	ND ⁶	ND ⁶	0.0014
Cobalt	0.73 ma/L ⁵	0.0006	0.0005	ND	0.002	ND	ND	ND	0.0020	ND	0.0020	ND	0.0090	0.0080	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	0.0006	ND"
Copper	1.3 mg/L	ND	ND	0.009 ND	ND	0.0200	0.0150	ND	0.0330 ND	ND 0.0020	ND	ND	ND	ND 0.0030	0.0020	0.0030	0.0060	0.0020	0.0010	ND 0.0020	ND	ND 0.0020	ND	0.0010	ND	0.0100	0.0400	ND	0.0013	ND ND							
	0.015 mg/L ¹ 0.002 mg/L ¹	0.0003 ND	ND ND	ND ND	ND NT	ND ND	0.0150 ND	0.0120 ND	ND ND	ND ND	0.0020 ND	ND ND	0.0020 ND	0.0020 ND	0.0030 ND	0.0020 ND	0.0020 ND	0:0020 ND	0.0010 ND	0.0010 ND	0.0020 ND	0.0020 ND	0.0020 ND	ND ND	0.0020 ND	ND ND	ND ND	ND ND	ND ND ⁶	ND ND	ND ND						
Mercury Nickel	0.002 mg/L ²	0.008	0.01	0.024	0.025	0.025	0.0200	0.0170	0.0140	0.0090	0.0140	0.0070	0.0220	0.0130	0.0060	0.0080	0.0040	0.0060	0.0040	0.0040	0.0060	0.0040	0.0040	0.0040	0.0050	0.0020	0.0040	0.0050		0.0030	0.0050	0.0030	0.0070	0.0110	0.0034	0.0028	0.0037
Selenium	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND.	0.0100	ND.	ND	ND ND	ND	0.0040	ND.	0.0120	0.0040	0.0040	ND.	ND.	ND.	ND.	ND	ND	0.0080	0.0060	ND	0.0300	ND	ND	ND
Silver	0.1 mg/L ^{2,3}	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1350	ND	ND	ND
Thallum	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin	22 mg/L ⁵	ND	ND	ND	NT	ND	0.0980	ND	0.1800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Vanadium	0.26 mg/L ⁵	ND	ND	ND	0.001	ND	ND	ND	0.0030	ND	0.0040	ND	0.0200	0.0200	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	2 mg/L ^{2,3}	0.001	ND	0.007	0.026	0.009	0.0070	0.0060	0.0130	0.0100	0.0220	ND	0.0500	0.0420	ND	ND	0.0050	0.0070	ND	0.0080	0.0100	ND		0.0080	0.0070	0.0080	0.0160	ND	0.0170	0.0147	0.0151						
Acetone	610 HQL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile Benzene	0.039 HQL" 5 HQL"	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane	80 µgL ²	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND						
Bromodichloromethane (THM)	90 H9L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 H9L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 µgL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5 µgL ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100 µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6 HQL ³	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	80 uat.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM) 1.2-Dibromo-3-chloropropane (DBCP)	80 μgL ¹ 0.2 μgL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.2-Dibromoethane (EDB)	0.05 Hall	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
1.2-Dichlorobenzene	600 ual.1	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1.4-Dichlorobenzene	75 HQL'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	Jal	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 HQL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 uat	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 HQL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene 1,2-Dichloropropane	100 HQL ¹ 5 HQL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichibropropene	µgL	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
trans-1.3-Dichloropropene	uaL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 ua/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	30 µgL²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 µg/L°	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride Methyl ethyl ketone(2-Butanone)	5 μgL ¹ 4000 μgL ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl iodide	HQL HQL	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND
4-Methyl-2-pentanone	HQL.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 µgL²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 H9L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 µgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane Trichloroethylene(TCE)	5 μgL' 5 μgL'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
Trichloroflouromethane	2000 Hall ²	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane	40 µgL ²	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND						
Vinyl acetate	410 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 µ9L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 µgL ⁴	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

- X/peros (1900 regist 1000 re

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-13 Concentration (Expressed in same units as Threshold Value)

Parameter	Thres Val		JUN '19	MAR '19	DEC '18	SEP:18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC 15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10
Antimony	0.006		ND	ND	0.002	0.002	0.002	ND	0.0360	ND	0.0020	0.0080	ND	0.0110	ND	0.0050	ND	0.0100	0.0200	ND	ND																
Arsenic	0.010			0.0081	0.01	0.01	0.02	0.0070	ND	0.0050	0.0200	ND	ND	0.0100		0.0190	0.0100	0.0110			0.0200		ND	0.0140	0.0160	0.0070	0.0080	0.0070	ND	ND	0.0060	0.0050	0.0050	0.0090	ND		0.0094
Barium	2		0.096	0.118	0.126	0.089	0.089	0.1150	0.0970	0.0460	0.0860	0.1080	0.0990	0.1830	0.0890	0.1700	0.0910	0.0870	0.0900	0.0890	0.1400	0.0870	0.0700	0.1180	0.0780	0.0650	0.0690	0.0750	0.0770	0.0760	0.0720	0.0760	0.0650	0.0760	0.0800		0.0817
Beryllium	0.004		ND	0.0010	ND	ND																															
Cadmium	0.005		0.0007	0.0004	0.004	0.003	0.004	0.0040	ND	0.0020	0.0030	0.0050	ND	0.0290	ND	0.0050	0.0040	0.0040	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	0.0020	ND	0.0004	0.0004
Chromium	0.1		0.0007	0.0004	0.002	0.002	0.002	0.0020	0.0010	ND	0.0040	0.0030	ND	0.0330	0.0050	ND	0.0040	ND	ND	ND	0.0090	ND	0.0010	0.0050	ND	ND ⁶											
Cobalt	0.73	ma/L ⁵	0.0111	0.0112	0.013	0.01	0.011	0.0130	0.0120	0.0070	0.0120	0.0140	0.0140	0.0280	0.0130	0.0150	0.0130	0.0120	0.0140	0.0160	0.0180	0.0110	0.0100	0.0120	0.0100	0.0090	0.0130	0.0120	ND	0.0100	0.0130	0.0120	0.0110	0.0120	0.0090	0.0192	0.0156
Copper	1.3	mg/L1	0.003	0.004	ND	ND	ND	ND	ND	ND	0.0100	ND	ND	0.0900	ND	0.0060	ND	0.0020	ND	0.0050	0.0730	0.0050	0.0050	0.0080	0.0230	0.0030	0.0050	ND	ND	ND	0.0060	0.0040	0.0020	0.0090	0.0300	0.0028	0.0018
Lead	0.015	mg/L1	0.0005	0.0008	0.002	ND	ND	0.0020	ND	ND	0.0010	ND	0.0070	0.0350	0.0190	ND	ND	0.0020	0.0030	0.0030	0.0170	0.0040	0.0040	0.0070	0.0020	0.0020	0.0030	0.0020	0.0020	0.0020	ND	0.0020	ND	0.0040	0.0130	0.0015	ND
Mercury	0.002	mg/L1	ND	ND	ND	NT	ND	ND ⁶																													
Nickel	0.1	mg/L ²	0.011	0.011	0.014	0.012	0.011	0.0120	0.0290	0.0060	0.0120	0.0350	0.0140	0.0465	0.0130	0.0130	0.0120	0.0120	0.0130	0.0130	0.0220	0.0110	0.0100	0.0120	0.0100	0.0090	0.0100	0.0100	0.0100	0.0100	0.0110	0.0100	0.0090	0.0110	0.0060	0.0141	0.0127
Selenium	0.05	mg/L1	ND	0.0390	ND	ND	ND	0.0800	0.0210	0.0590	0.0120	0.0330	0.0700	0.0350	0.0400	ND	ND	0.0700	0.0640	0.0620	0.0710	0.0690	0.0100	ND	ND												
Silver	0.1		ND	ND	0.001	ND	ND	ND	ND	0.0020	ND	0.0020	ND	ND	0.0010	0.0020	0.0020	ND	0.0010	0.0010	ND	0.0020	ND	0.0020	ND	0.0030	0.0340	ND	ND								
Thallium	0.002		ND	ND	ND	ND	ND	0.0003	0.0003	ND	ND																										
Tin	22		ND	ND	ND	NT	ND	0.2800	0.1100	ND	0.0120	ND	ND	0.0010	ND	ND	ND	0.0170	0.0400	0.0090	0.0180	ND	ND ⁶	ND													
Vanadium	0.26		ND	ND	800.0	0.004	ND	ND	0.0020	ND	ND	ND	0.0060	0.0390	0.0030	ND	ND	ND	ND	ND	0.0130	0.0020	ND	0.0010	0.0040	ND	0.0020	ND	0.0200	ND	ND						
Zinc		mg/L ^{2,3}	0.007	0.005	0.019	0.01	0.012	0.0170	0.0070	0.0070	0.0200	0.0170	ND	0.1300	0.0130	0.0060	ND	0.0070	ND	ND	0.0470	ND	ND	0.0090	ND	ND	0.0110	0.0100	ND	ND	0.0230	0.0050	0.0050	0.0090	ND		0.0092
Acetone	610		16.88	ND	ND																																
Acrylonitrile Benzene	0.039		ND ND ⁴	ND ND																																	
	5 :													ND ND												ND ND					ND ND						
Bromochloromethane Bromodichloromethane (THM)	90		ND ND	ND ND																																	
Bromodicnicromethane (THM) Bromoform	80		ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
Carbon disulfide	1000		ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
Carbon disunide Carbon tetrachloride	1000		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND						
Chlorobenzene	100		4.1	5.9	6.19	ND	4.72	5.40	ND	5.23	5.03	6.8	ND	5.5	2.5	66	7.4	63	6.1	7.4	8.1	ND	7.1	7.2	6.4	2.2	3.9	6.8	6.3	16	4.2	6.7	6.5	6.0	3.7	6.2	5.6
Chloroethane	4.6		ND.	ND	ND.	ND	ND.	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND																			
Chloroform	80		ND	ND																																	
Chlorodibromomethane (THM)	80		ND	ND																																	
1.2-Dibromo-3-chloropropane (I	BCP 0.2	und 1	ND	ND																																	
1.2-Dibromoethane (EDB)	0.05		ND	ND																																	
1,2-Dichlorobenzene	600	µg/L ¹	ND	1.07	ND	ND																															
1,4-Dichlorobenzene	75	μg/L¹	ND	ND	1.31	ND	ND	ND	ND	1.11	ND	1.4	1.2	1.3	ND	ND	1.4	ND	ND	ND	ND	1.0	1.2	ND	ND	1.2	ND	1.4	1.0	ND ⁴	1.1						
trans-1,4-Dichloro-2-butene		μg/L	ND	ND																																	
1,1-Dichloroethane	5	μg/L	ND	ND																																	
1,2-Dichloroethane	5	μg/L	ND	ND																																	
1,1-Dichloroethylene	7		ND	ND																																	
cis-1,2-Dichloroethene	70		ND	ND																																	
trans-1,2-Dichloroethene	100		ND	ND																																	
1,2-Dichloropropane	5		ND	ND																																	
cis-1,3-Dichloropropene		μg/L	ND	ND																																	
trans-1,3-Dichloropropene		μg/L	ND	ND																																	
Ethylbenzene	700		ND	ND																																	
Methyl butyl ketone(2-Hexanone Bromomethane) 160		ND ND	ND ND																																	
Chloromethane	30		ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND								
Ditromomethane	61		ND	ND																																	
Methylene chloride	5		ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND						
Methyl ethyl ketone(2-Butanone)	4000		ND	ND																																	
Methyl iodide		μg/L	ND	ND																																	
4-Methyl-2-pentanone		ua/L	ND	ND																																	
Styrene	100		ND	ND																																	
1,1,2-Tetrachloroethane	70		ND	ND																																	
1,1,2,2-Tetrachloroethane	0.3		ND	ND																																	
Tetrachloroethylene(PCE)	5	μg/L ¹	ND	ND																																	
Toluene	1000		ND	ND																																	
1,1,1-Trichloroethane	200	μg/L ¹	ND	ND																																	
1,1,2-Trichloroethane	5	μg/L¹	ND	ND																																	
Trichloroethylene(TCE)	5	μg/L ¹	ND	ND																																	
Trichloroflouromethane	2000		ND	ND																																	
1,2,3-Trichloropropane	40		ND	ND																																	
Virryl acetate	410		ND	ND																																	
Virryl chloride	2		ND	ND																																	
Xylenes	10000		ND	ND																																	
Methyl tert-butyl ether (MTBE)	20 - 40	μg/L"	3.3	3.4	3.99	ND	3.26	ND	ND	3.70	3.53	6.1	ND	3.6	2.6	4.1	4.9	3.2	5.2	4.5	2.9	ND	4.2	5.0	5.4	3.3	3.3	5.0	4.5	2.8	3.8	4.5	2.8	4.7	3.2	7.9	3.8

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW'-14 Concentration (Expressed in same units as Threshold Value)

	Parameter.	Threshold	JUN 19	MAR '19	DEC 18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP 16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEP '13	JUN '13	MAR '13	DEC '12	SEP '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT 10
	Artimony		0.0001	0.0001	0.005	NT	ND	ND	0.0350	NT	0.0050	0.0410	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	0.0110	0.0170	ND	ND	NT
Part						NT			0.0030			0.0120		NT								NT				NT				NT	ND			0.0060	ND			NT
Part	Barium	2 ma/L1			0.21	NT			0.1990		0.2400	0.2490	0.2290	NT	0.1380	0.1750	0.1980	0.1140		0.2020	0.0910	NT	0.1570	0.1840	0.0790	NT	0.1440	0.1760	0.1370	NT	0.1750	0.1770	0.1470	0.1610	0.2100	0.2700	0.2030	NT
Part																																						
Final Properties																																						
Figs																																						
Mart																												0.0160										
Marchesters																												0.0080										
Part	Mercury							ND			ND				ND	ND		ND		ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND		ND	ND		ND	ND	
Tenne 1. 194. 16. 194. 194. 194. 194. 194. 194. 194. 194						NT		0.0220		NT				NT	0.0160			0.0200				NT	0.0150	0.0230		NT	0.0120	0.0200		NT	0.0190		0.0150	0.0180			0.0407	NT
Temple 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Selenium	0.05 mg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	0.0350	0.0140	NT	ND	ND	0.0260	NT	ND	ND	ND	NT	0.0200	0.0310	0.0240	0.0300	ND	ND	ND	NT
Temple 1. 19																																						
Part																																						
The column																																						
Authors Case																																						
Figure S. orallow S. oral																																						
Boundary			2.24	2.1	2.28	NT	2.77	ND	ND	NT	3.2	4.1		NT	2.7	3.1		2.0		3.5		NT	3.3	3.6		NT	2.9	4.3		NT				4.1				
Description Section	Bromochloromethane	80 µg/L ²	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Calcino standiscription 1000 and \$\frac{1}{1}\$ NOS																																						
Control processor Fig. No.																																						
Chesione 10 Mail 10 Mail 10 Mail 13																																						
Classoniane 4.8 of all 100 1																																						
Classification of the conting of t																																						
Part																																						
1-2 Confisionemental (ERS) 1 Confisionemental	Chlorodibromomethane (THM)		ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND		ND	NT	ND		NT	ND	ND		NT	ND	ND		NT	ND	ND		ND				NT
1-1-Challes becomes 1-1-Challes 1-1-Ch																										NT												
14-Dischardenees																																						
Fig.																																						
1.1-Disclipsopurium 5 i i i i i i i i i i i i i i i i i i																																						
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-																																						
Section 1.5 Section 1.																																						
	1,1-Dichloroethylene	7 µg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
13.0 February 13	cis-1,2-Dichloroethene			ND	ND	NT		ND	ND	NT		ND	ND	NT		ND	ND	ND	NT	ND	ND	NT		ND	ND	NT		ND	ND	NT		ND	ND	ND			ND	NT
Grand-processor Grand Grand processor Grand Grand processor Grand Grand processor Gran																																						
The precision of the																																						
Figure F																																						
Methylate/picker/searces 160 ab. Methylate Met																																						
Benomethers 19 pSt No No No No No No No N																																						
Departmentage Fig. Sect. No.		10 μg/L ²				NT				NT				NT		ND		ND				NT				NT				NT				ND				NT
Member of the feature of the featu	Chloromethane			ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Maring Headers Mari																																						
Mary Label Mar																																						
Admy-layerstroom 10.5 No.																																						
Symmin 100 Let 1 NO																																						
1.1.1.2 frameshousement																																						
Feature Feat																																						
Takenery 1000 Lot 1 No	1,1,2,2-Tetrachloroethane	0.3 µg/L ²	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1.1.1-Techsordamen 200_40\$\frac{1}{1}\$ NO																																						
1.51-2 feebourdaries																																						
Train-fore-free-free-free-free-free-free-free																																						
Technologous Market William Service Se																																						
12.3 Technologopour 40 just 1 NO NO MO NO NT NO NO NO NT NO NT NO NO NT NT NO NT NT NO NT NT NO NT																																						
Visipositistis 410 ind. 1 NO NO NO NT NT NO NO NT NT NO NO NT																																						
Very close 2 : 194. ** NO NO NO NT NO NT NO NO NT NO NT NO NO NT N																																						
Methyltenbudylether/(MTBE) 20-40 jugit 507 50 797 NT 623 94 ND NT 7.08 165 ND NT 6.7 7.7 12.3 69 NT 11.2 1.7 NT 6.6 14.8 4.3 NT 6.9 11.9 11.0 NT 7.5 8.4 6.6 12.4 7.0 16.3 12.3 NT				ND	ND	NT		ND	ND	NT		ND	ND	NT		ND		ND		ND		NT		ND		NT				NT		ND		ND				NT
	Methyl tert-butyl ether (MTBE)			5.0	7.97	NT	6.23	9.4	ND	NT	7.08	16.5	ND	NT	6.7	7.7	12.3	6.9	NT	11.2	1.7	NT	6.6	14.8	4.3	NT	6.9	11.9	11.0	NT	7.5	8.4	6.6	12.4	7.0	16.3	12.3	NT

- Methy latchaid refer (MTBB) 2: 0-00 get. 5.07 is 0.787 in MT 6.20 list 4 ND MT 7.78 is 5.6 ND MT 6.7

 1. Threshold value given in the Generated MCJ. Las provided in the USEPA 2005 Edition of the Dinning Water Standards and Health Advisories
 2. Threshold value given in the Secondary Dinning Water Standards and Health Advisories
 3. Threshold value given in the Secondary Dinning Water Standards and Health Advisories
 4. Threshold value given in the Secondary Dinning Water Standards and Health Advisories
 5. Threshold value given in the Discoving Water Regulation (SDWR) as provided in the USEPA 2005 Edition of the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Discoving Water Advisory as provided in the USEPA 2005 Edition of the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Advisory as provided in the USEPA 2005 Edition of the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisories
 6. Threshold value given in the Dinning Water Standards and Health Advisorie

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-15 Concentration (Expressed in same units as Threshold Value)

Parameter.	Threshold	JUN19	MAR '19	DEC 18	SEP '18	JUN 18	MAR '18	DEC '17	SEP '17	JUN 17	MAR '17	DEC '16	SEP 16	JUN '16	MAR 16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN 14	MAR '14	DEC '13	SEPT 13	JUN 13	MAR '13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR 11	DEC '10	SEPT 10
Antimorry	0.006 mg/L ¹	ND	ND	0.0040	0.0040	ND	ND	0.0300	ND	0.0020	0.0340	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	0.0070	0.0060	0.0400	ND	ND	ND	ND
Arsenic	0.010 mg/L ¹	0.0205	0.0352	0.02	0.03	0.03	0.0200	0.0200	0.0300	0.0300	ND	ND	0.0700	0.0130	0.0320	0.0170	ND	ND	0.0160	ND ND	0.0350	ND ND	ND	0.0050	0.0280	0.0130	0.0180	0.0040	0.0300	ND	ND	0.0110	ND	ND	0.0023		0.0362
Barium	2 ma'L1	0.148	0.158	0.212	0.084	0.096	0.1280	0.1240	0.0850	0.0890	0.1230	0.1560	0.3100	0.0600	0.1130	0.1840	0.1390	0.2230	0.1260	0.1350	0.1060	0.1810	0.1180	0.1340	0.0750	0.1510	0.1550	0.1340	0.1010	0.2360	0.2350	0.1620	0.1930	ND	0.1890	0.1260	0.1110
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND.	ND	0.0010	ND	0.0050	ND	ND	ND ⁶															
Cadmium	0.005 mg/L ¹	ND	ND	0.008	0.007	0.010	0.0090	ND	0.0100	0.0050	0.0100	0.0050	0.0460	ND	0.0100		0.0070	ND	ND	ND	ND	0.0100	0.0010	ND	0.0010	ND	0.0040	ND	0.0020	ND	0.0060	0.0010	0.0040	ND	ND	ND ⁶	ND ⁶
Chromium	0.1 mg/L1	0.0009	0.0007	ND	ND 0.014	ND 0.012	ND	ND 0.0090	0.0030	ND 0.0130	0.0020	ND	0.1180	0.0020	0.0010	0.0050	0.0020	0.0010	ND 0.0120	ND ND	0.0030	0.0030	0.0030	ND 0.0010	ND 0.0140	ND 0.0100	ND 0.0060	ND 0.0020	0.0020	ND	0.0020	ND 0.0090	ND 0.0020	ND ND	ND 0.0039	ND* 0.0185	0.0018
Cobalt Copper	0.73 ma'L ¹	0.0124 ND	0.0126 ND	0.008 ND	0.014 ND	ND	0.0100 ND	0.0090 ND	ND	0.0130 ND	0.0040 ND	ND ND	0.2300	0.0080 ND	0.0180 ND	0.0070 ND	0.0040 ND	0.0020 ND	0.0120	ND ND	0.0190 ND	0.0020	ND 0.0040	0.0010	0.0140	0.0100	0.0060	0.0020 ND	ND	0.0030 ND	0.0040	0.0090	0.0020	0.2400	ND.	0.0185	0.0244
Lead	0.015 mg/L ¹	0.0003	0.0003	0.0030	0.0020	ND	0.0020	ND	ND	0.0020	ND	0.0050	0.1350	0.0140	ND	ND	ND	0.0040	0.0020	0.0040	0.0110	0.0000	0.0040	0.0240	0.0000	0.0000	0.0000	0.0030		0.0020	0.0030	0.0040	0.0100	ND	ND	0.0012	0.0035
Mercury	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0070	ND	ND	ND						
Nickel	0.1 mg/L ²	0.025	0.025	0.017	0.029	0.023	0.0200	0.0510	0.0350	0.0240	0.0520	0.0110	0.6610	0.0140	0.0290	0.0170	0.0100	0.0110	0.0180	0.0080	0.0330	0.0120	0.0070	0.0110	0.0230	0.0190	0.0150	ND	0.0270	0.0110	0.0130	0.0160	0.0090	0.0140	0.0086	0.0374	0.0396
Selenium	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0220	ND	ND	ND	ND	0.0160	ND	ND	ND	ND	0.0100	0.0120	0.0180	0.0110	0.0190	0.0400	ND	ND ⁶	ND.
Silver	0.1 mg/L ^{2,3}	ND	0.0001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0030	0.0020	0.0150	0.0030	0.0030	0.0050	0.0020	0.0030	0.0030	ND	0.0040	ND	0.0050	ND	0.0050	ND	ND	ND*	ND"
Thallum	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND ⁶	ND ND ⁴
Tin Vanadium	22 mg/L ⁶ 0.26 mg/L ⁶	ND 0.0007	ND 0.0010	ND 0.0150	ND 0.0110	ND ND	ND 0.0060	ND 0.0040	ND 0.0110	ND ND	ND ND	ND 0.0150	1.0600	ND 0.0050	ND ND	0.0470 ND	ND 0.0020	ND ND	ND 0.0040	ND 0.0050	ND 0.0060	ND 0.0040	0.0270	0.0780	0.0210	0.0400	ND 0.0040	ND 0.0040	ND 0.0030	ND 0.0030	ND 0.0020	ND 0.0020	ND ND	ND 0.0160	ND ⁶ ND	0.0012	0.0023
Zinc	2 mg/L ^{2,3}	0.0007	0.0010	0.0150	0.0110	0.032	0.0060	0.0040	0.0110	0.0200	0.0140	ND	0.1560	ND	0.0120	0.0150	0.0020	ND	ND	ND.	ND.	ND	ND.	ND	ND.	0.0050	0.0040	ND	0.0030	0.0030	0.0020	0.0020	0.0170	ND.	0.0181	0.0012	0.0023
Anetone	610 HQL ⁵	19 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	6.7	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	18.6	ND	6.8	ND	ND						
Acrylonitrile	0.039 HQL ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Berzene	5 µgL ¹	1.94	1.5	1.76	ND	1.67	ND	ND	3.59	2.83	ND	ND	3.4	3.2	2.1	3.2	1.7	2.0	2.8	2.8	3.6	2.2	2.1	2.8	3.4	2.7	2.8	2.5	3.4	3.1	2.7	3.2	3.5	2.1	1.9	3.3	3.5
Bromochloromethane	80 µg.L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform Carbon disuffide	80 HQL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon districte	1000 μg/L 5 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Chiorobenzene	100 µg/L ¹	14.4	13.2	15.49	14.0	12.72	17	15.2	18 19	21.26	17.4	21.5	16.0	16.8	17.7	18.3	21.0	21.1	19.7	26.9	19.0	27.0	25.0	32.5	18.9	14.3	20.0	29.0	15.5	12.4	16.9	15.8	25.0	11.8	23.1	19.8	16.9
Chloroethane	4.6 HQL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8	ND	1.9	ND	1.1	ND	ND	ND	ND	2.9														
Chloroform	80 uat.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 µg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane (DBCP)	0.2 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	0.05 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene 1,4-Dichlorobenzene	600 μαL ¹ 75 μgL ¹	ND 2.64	ND 2.1	ND 3.06	ND ND	ND ND	ND ND	ND ND	ND 2.51	ND ND	ND 1.6	ND ND	ND ND	ND 2.1	ND ND	ND ND	ND 3.4	ND 2.9	ND 3.0	ND ND	ND ND	1.1	1.0 ND	1.3 ND	ND 2.1	ND 2.3	ND 2.6	1.2	ND 1.9	ND 1.9	ND 2.3	ND 1.5	ND 3.1	ND 2.1	ND 2.9	ND 2.4	ND 2.4
trans-1.4-Dichloro-2-butene	HQL.	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND.	ND.																	
1.1-Dichloroethane	5 HQL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 uat	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane cis-1,3-Dichloropropene	5 uat' µat	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,3-Dichloropropene	Har.	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND												
Ethylberzene	700 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 ual.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	30 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 µQL ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5 ual.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl ethyl ketone(2-Butanone) Methyl iodide	4000 µgL² µgL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND												
4-Methyl-2-pentanone	ug.L	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND												
Styrene	100 uaL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Tetrachioroethane	70 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachioroethane	0.3 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 HQL ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000 uaL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane 1,1,2-Trichloroethane	200 µg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Inchloroetrane Trichloroethylene(TCE)	5 µgL1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND									
Trichloroflouromethane	2000 H9L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
1.2.3-Trichloropropane	40 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	410 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	3.3	ND	ND	2.2	5.4	ND	ND	3.1	ND	6.1	2.0	3.9	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 µg/L ⁴	9.38	7.5	3.69	7.0	6.61	ND	6.3	7.52	7.69	8.5	ND	7.9	7.9	6.8	7.8	6.7	12.2	7.1	4.2	6.0	9.4	5.4	7.7	8.3	10.3	6.1	3.9	8.8	9.5	9.5	5.5	7.5	7.1	7.9	6.1	7.6

TABLE 1 (CONT.)

SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-16

Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>		shold lue	<u>JUN '19</u>	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	NOV '17
Antimony	0.006		ND	ND	ND	ND	0.002	ND	ND
Arsenic	0.010	mg/L ¹	ND	ND	ND	ND	0.01	ND	ND
Barium		mg/L ¹	0.008	0.014	0.017	0.027	0.011	0.0190	0.1000
Beryllium		mg/L ¹	0.0002	0.0001	ND	ND	ND	ND	ND
Cadmium		mg/L	0.0002	0.0003	ND	ND	ND	ND	ND
Chromium		mg/L¹	ND	ND	0.003	0.003	0.004	0.0060	0.0050
Cobalt		mg/L ⁵	0.0009	0.0008	0.006	0.004	0.002	0.0050	0.0050
Copper		mg/L ¹ mg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Lead Mercury		mg/L ¹	ND	ND	ND	NT	ND	ND	ND
Nickel		mg/L ²	0.002	0.002	0.013	0.01	0.009	0.0100	0.0100
Selenium		mg/L ¹	ND	ND	0.009	0.003	ND	0.0100	0.0050
Silver		mg/L ^{2,3}	ND	0.0001	ND	ND	ND	ND	ND
Thallium	0.002	mg/L ¹	ND	ND	ND	ND	ND	0.0003	ND
Tin	22	mg/L ⁵	ND	ND	ND	NT	ND	ND	ND
Vanadium		mg/L ⁵	ND	ND	ND	ND	ND	ND	ND
Zinc		mg/L ^{2,3}	0.004	0.004	0.025	0.019	0.022	0.024	0.0210
Acetone		μg/L ⁵	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	0.039		ND	ND	ND	ND	ND	ND	ND
Benzene		μg/L¹	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane		μg/L ² μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM) Bromoform		μg/L μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon disulfide		μg/L ⁵	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Chloroethane		μg/L ⁵	ND	ND	ND	ND	ND	ND	ND
Chloroform	80	μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80	μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane (DBCP)		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75	μg/L ¹ μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,4-Dichloro-2-butene 1,1-Dichloroethane	5	μg/L	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane		μg/L	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		μg/L¹	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100	μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	μg/L ¹	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene		μg/L	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene		μg/L	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)		μg/L ⁵ μg/L ²	ND	ND	ND	ND	ND	ND	ND
Bromomethane		μg/L μg/L ²	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Chloromethane Dibromomethane		μg/L ⁵	ND	ND	ND ND	ND	ND	ND	ND
Methylene chloride		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)		μg/L ²	ND	ND	ND	ND	ND	ND	ND
Methyl iodide		μg/L	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		μg/L	ND	ND	ND	ND	ND	ND	ND
Styrene	100	μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane		μg/L ²	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3	μg/L ²	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Toluene		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE) Trichloroflouromethane		μg/L ¹ μg/L ²	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane		μg/L μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl acetate		μg/L ⁵	ND	ND	ND	ND	ND	ND	ND
Vinyl addate Vinyl chloride		μg/L ¹	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000		ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40		4.9	4.67	3.77	3.42	6.53	7.8	4.6
		- Evene	ded MCI						

= Exceeded MCL

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 2 BACKGROUND WELL HISTORICAL RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-9 Concentration (Expressed in same units as Threshold Value)

Parameter	Value 0.006 mg/L ¹	JUN '19	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17 SI	P 47 .II	JN '17 MA	R 17 DE	CHE S	EP 16 J	IN 16	MARKE	DEC ME 1																						
															insur io	DEC 10 5	SEP 15	JUN 15	MAR '15	DEC '14	SEP '14	JUN '14 P	MAR '14 DE	'13 SE	P 13 J	JN 13 M.	AR 13 I	DEC 12 8	SEP 12	JUN 12	MAR 12	DEC '11	SEP 11	JUN '11	MAR 11	DEC '10	SEP '10	JUN '10
Antimony		ND	0.0001	ND	NT	ND	ND	0.0290	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1	NT	ND	ND	ND	NT	ND	ND	ND	0.0160	0.2000	ND	ND	NT	ND
Arsenic	0.010 mg/L1	ND	0.0001	ND	NT	ND	ND	ND	NT	NT 0:		ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Barium	2 ma/L ¹	0.0060	0.0060	0.0320	NT	0.0090	0.0130					0060	NT			0.0110	NT	NT	0.0070	0.0420	NT		0.0120 0.0					0.0160	NT	0.0110	0.0120	0.0070	0.0120	0.0080	0.0221	0.0230	NT	0.0460
Beryllium	0.004 ma/L ¹	0.0001	0.0003	ND	NT	ND	ND					ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	0.0015
Cadmium	0.005 ma/L ¹	0.0001	0.0001	ND	NT	ND	0.0020					ND	NT		0.0010	ND	NT	NT	ND	0.0020	NT	ND	ND 0.0					0.0010	NT	ND	ND	ND	0.0020	ND	ND	ND	NT	ND
Chromium Cobalt	0.1 ma/L ¹ 0.73 ma/L ⁵	0.0019 ND	0.0019	0.013	NT NT	0.003 ND	0.0070					ND ND	NT NT	NT NT	0.0050 ND	0.0070 ND	NT NT	NT NT	0.0060 ND	0.0270	NT NT		0.0070 0.0					0.0120	NT NT	0.0060 ND	0.0080	0.0040 ND	0.0020 ND	ND ND	0.0079	0.0068	NT NT	0.0230
Copper	1.3 mg/L1	ND ND	ND ND	0.0030	NT	ND ND	ND ND					ND	NT		0.0020	ND ND	NT	NT	0.0020	0.0100	NT		0.0060 0.0			.0020 0		0.0060	NT	ND ND	0.0020	0.0010	0.0100	0.0400	0.0019	0.0015	NT	0.0200
Lead	0.015 mg/L1	0.0004	0.0007	0.004	NT	0.001	0.0020					0060	NT	NT		0.0050	NT	NT		0.0160	NT		0.0030 0.1					0.0060	NT	ND.		0.0010	0.0040	0.0060	ND	ND	NT	0.0140
Mercury	0.002 mg/L1	ND	ND	ND	NT	ND	ND		NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND .	ND	NT	ND	ND N	D 1	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Nickel	0.1 mg/L ²	ND	0.0010	0.006	NT	0.001	0.0040	0.0240	NT	NT 0:	0040	ND	NT	NT	0.0030	0.0030	NT	NT	0.0170	0.0180	NT	0.0030	0.0040 0.0	290 1	NT 0	.0050 0	0.0050	0.0070	NT	0.0030	0.0040	0.0020	0.0080	0.0080	0.0046	0.0037	NT	0.0150
Selenium	0.05 ma/L ¹	ND	ND	ND	NT	ND	ND					0100	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND 0.0		NT	ND	ND	ND	NT	ND	ND	ND	0.0100	0.0100	ND	ND	NT	ND
Silver	0.1 mg/L ^{2,3}	ND	0.0005	ND	NT	ND	ND					ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	0.1180	ND	ND	NT	ND
Thallum	0.002 ma/L ¹	ND	ND	ND	NT	ND	ND					ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Tin Vanadium	22 ma/L ⁵	ND ND	ND	ND	NT	ND ND	ND		NT NT			ND	NT NT	NT NT	ND	ND 0.0020	NT NT	NT NT	ND	ND 0.0140	NT NT		0.0080 0.1		NT n	ND	ND 10020	ND 0.0040	NT NT	ND	ND	ND ND	ND ND	0.0190 ND	ND 0.0034	ND 0.0034	NT NT	ND 0.0150
Vanadium Zinc	0.26 ma/L ³	0.0030	ND 0.0030	0.0080	NT NT	0.0090	0.0020		NT			ND ND	NT		0.0010	0.0020	NT	NT	ND ND	0.0140	NT	0.0020	0.0030 0.0					0.0040	NT	ND 0.0150	0.0010	0.0090	0.0140	ND ND	0.0034	0.0034	NT	0.0150
Acetone	610 Hg/L ³	ND.	ND	ND ND	NT	ND ND	ND					NT	NT	NT	ND	ND	NT	NT	ND ND	ND ND	NT	ND ND	ND N			ND U	ND	ND	NT	ND.	ND	ND	ND	ND ND	ND	ND.	NT	ND ND
Acrylonitrile	0.039 HALS	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Benzene	5 µg/L1	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N				ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Bromochloromethane	80 Hg/L ²	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Bromodichloromethane (THM)	90 µg/L	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N				ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Bromoform	80 µg/L1	ND	ND	ND	NT	ND	ND		NT NT			NT NT	NT NT	NT NT	ND	ND	NT NT	NT NT	ND	ND	NT NT	ND	ND N		NT NT	ND	ND	ND	NT NT	ND	ND	ND	ND	ND	ND	ND	NT NT	ND
Carbon disuffide Carbon tetrachloride	1000 HAL ⁵ 5 HAL ¹	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND					NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND N		NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
Chloroberizene	100 HAL	ND ND	ND ND	ND ND	NT	ND ND	ND ND					NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND ND	ND N		NT	ND ND	ND.	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND.	NT	ND ND
Chloroethane	4.6 µgL ^b	ND.	ND	ND	NT	ND.	ND					NT	NT	NT	ND.	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND.	ND	ND.	ND	ND	ND	ND	NT	ND ND
Chloroform (THM)	80 Hg/L1	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Chlorodibromomethane (THM)	80 HQL1	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dibromo-3-chloropropane (DBCI	0.2 µg/L	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dibromoethane (EDB)	0.05 Hg/L ¹	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dichlorobenzene	600 µg.L.¹ 75 µg.L.¹	ND	ND	ND	NT NT	ND	ND ND					NT NT	NT	NT NT	ND	ND	NT NT	NT NT	ND ND	ND	NT NT	ND	ND N		NT NT	ND	ND	ND ND	NT NT	ND ND	ND	ND ND	ND	ND	ND	ND	NT NT	ND
1,4-Dichloroberzene trans-1.4-Dichloro-2-butene	75 Hg/L	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND					NI NT	NT NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND ND	ND N			ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT	ND ND
1 1-Dichlomethane	5 ug/L	ND ND	ND	ND ND	NT	ND ND	ND ND	ND ND				NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND	NT	ND ND	ND N			ND ND	ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	NT	ND ND
1.2-Dichloroethane	5 H9L1	ND	ND	ND	NT	ND	ND	ND	NT	NT		NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND.
1,1-Dichloroethylene	7 µgL1	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1		ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
cis-1,2-Dichloroethene	70 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
trans-1,2-Dichloroethene	100 HAL	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dichloropropane	5 μg/L'	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
cis-1,3-Dichloropropene	µgL µgL	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND					NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND N			ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
trans-1,3-Dichloropropene Ethylbenzene	700 Hg/L ¹	ND ND	ND ND	ND ND	NT	ND ND	ND ND					NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND	NT	ND ND	ND N		NT	ND ND	ND ND	ND	NT	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND.	NT	ND ND
Methyl butyl ketone(2-Hexanone)	160 HAL	ND.	ND.	ND.	NT	ND.	ND.		NT			NT	NT	NT	ND.	ND	NT	NT	ND.	ND	NT	ND.	ND N		NT	ND.	ND	ND	NT	ND.	ND.	ND.	ND.	ND.	ND.	ND.	NT	ND.
Bromomethane	10 µgL²	ND ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND
Chloromethane	30 µg/L2	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Dibromomethane	61 µg/L ³	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methylene chloride	5 µg/L1	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methyl ethyl ketone(2-Butanone)	4000 µg/L ²	ND ND	ND	ND ND	NT	ND ND	ND		NT NT			NT NT	NT	NT NT	ND	ND	NT	NT	ND	ND	NT	ND ND	ND N		NT NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND ND	NT	ND ND
Methyl iodide 4-Methyl-2-pentanone	µgL µgL	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND		NT NT			NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT	ND ND	ND N		NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
4-Metryi-2-pentanone Styrene	100 µg/L	ND ND	ND ND	ND ND	NT	ND ND	ND ND					NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND ND	ND N			ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT	ND ND
1,1,1,2-Tetrachloroethane	70 HQL2	ND.	ND	ND.	NT	ND.	ND		NT			NT	NT	NT	ND.	ND	NT	NT	ND.	ND	NT	ND.	ND N		NT	ND.	ND	ND	NT	ND.	ND	ND.	ND.	ND.	ND.	ND.	NT	ND ND
1,1,2,2-Tetrachloroethane	0.3 µQL2	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Tetrachloroethylene(PCE)	5 µg/L1	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N			2.1	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Toluene	1000 Hg/L1	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,1,1-Trichloroethane	200 µg/L	ND	ND	ND	NT	ND	ND		NT			NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N		NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,1,2-Trichloroethane	5 µgL1	ND	ND ND	ND ND	NT NT	ND ND	ND ND					NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND N		NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
Trichloroethylene(TCE) Trichloroflouromethane	2000 upt."	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND					NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND N		NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
1.2.3-Trichloropropane	40 HQL ²	ND ND	ND ND	ND ND	NT	ND ND	ND ND					NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND ND	NT	ND ND	ND N				ND ND	ND ND	NT	ND ND	ND ND	ND ND	NO.	ND ND	ND ND	ND ND	NT	ND ND
Vinyl acetate	410 µg/L ³	ND ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND.	ND	NT	ND	ND N			ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND
Vinyl chloride	2 µg/L1	ND	ND	ND	NT	ND	ND			NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N				ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Xylenes	10000 µQ-€-1	ND	ND	ND	NT	ND	ND					NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1		ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methyl tert-butyl ether (MTBE)	20 - 40 µg/L ⁴	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND N	D 1	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Note: Analytical data reported since co July 2002 represents the first tin	mmencement of lo		ing was con	ducted at O'				ed in May 200	2, but no s	sample wa	s taken at	OW-9 a	t this time.																									

- 1. Throbbot value gover in the Mariem Contract and MALL agreed in the USEPA 2005 Edition of the Disn's White Elevations and Health Additionates
 2. Throbbot value given in the Mariem Contract and MALL agreed in the USEPA 2005 Edition of the Disn's White Elevations and Health Additionates
 2. Throbbot value given in the Mariem Institute given provided in the USEPA 2005 Edition of the Disn's White Mariem Institute given in the Disn's White Mariem Institute given in the Disn's White Mariem Institute given in the Disn's White Mariem Institute given in the Mariem Institute given Institute and Health Additionate
 4. Throbbot value given in the Disn's White Mariem Institute given in the Mariem Institute given Institute given

No threshold value has been provided for parameters not identified in the sources listed above
" = One half of the laboratory detection limit "DL"
NT = Not Tested due to dry conditions at well.

TABLE 2 (CONT.) BACKGROUND WELL HISTORICAL RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-12 Concentration (Expressed in same units as Threshold Value)

Parameter.	Threshold Value	JUN 19	MAR '19	DEC 18	SEP 18	JUN 18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP 16	JUN 16	MAR 16	DEC 15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN 14	MAR:14	DEC '13	SEPT 13	JUN 13	MAR '13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR:11	DEC 10	SEPT 10
Artimony	0.006 mg/L ¹	ND	ND	ND	ND	0.001	ND	0.0210	ND	0.0010	0.0250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND	ND	0.0100	0.0600	ND	ND	ND
Arsenic	0.010 mg/L1	ND	ND	ND	ND	0.01	ND	0.0050	ND	0.0090	ND	ND	ND	0.0060	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	0.0300	ND	ND	ND
Barium	2 ma*L ¹	0.024	0.02	0.02	0.023	0.02	0.0170	0.0240	0.0260	0.0240	0.0410	0.0260	0.0670	0.0360	0.0200	0.0260	0.0250	0.0190	0.0600	0.0160	0.0210	0.0120	0.0140	0.0130	0.0150	0.0080	0.0130	0.0180	0.0170	0.0160	0.0160	0.0100	0.0280	0.0130	0.0113	0.0151	0.0156
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND
Cadmium	0.005 mg/L ¹	0.0004	0.0004	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	0.1 mg/L1	0.0001	ND	ND	0.002	ND	ND	ND	0.0030	0.0010	0.0040	ND	0.0180	0.0130	ND	0.0020	ND	ND	ND	ND	0.0020	0.0020	0.0020	0.0010	0.0020	ND	0.0020	ND	ND	ND	0.0010	ND	ND	ND	ND ⁶	ND ⁶	0.0014
Cobalt Copper	0.73 malL ^b 1.3 mg/L ¹	0.0006 ND	0.0005 ND	ND 0.009	0.002 ND	ND ND	ND ND	ND ND	0.0020 ND	ND ND	0.0020 ND	ND ND	0.0090	0.0080	ND ND	ND 0.0330	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.0020	ND 0.0030	ND 0.0050	ND 0.0020	ND 0.0010	ND ND	ND ND	ND ND	ND ND	ND 0.0010	ND ND	ND 0.0100	ND 0.0400	ND ⁶	0.0006	ND ⁴
Lead	0.015 mg/L ¹	0.0003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0150	0.0120	ND	ND.	0.0020	ND	0.0020	0.0020	0.0030	0.0020	0.0020	0.0020	0.0020	0.0010	0.0020	0.0020	0.0020	ND	0.0010	ND	ND	ND	ND	ND	ND ND
Mercury	0.002 mg/L1	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND
Nickel	0.1 mg/L ²	0.008	0.01	0.024	0.025	0.025	0.0200	0.0170	0.0140	0.0090	0.0140	0.0070	0.0220	0.0130	0.0060	0.0080	0.0040	0.0060	0.0040	0.0040	0.0060	0.0040	0.0040	0.0040	0.0050	0.0020	0.0040	0.0050	0.0040	0.0030	0.0050	0.0030	0.0070	0.0110	0.0034	0.0028	0.0037
Selenium	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0100	ND	ND	ND	ND	0.0060	ND	0.0120	0.0110	0.0060	ND	ND	ND	ND	ND	ND	0.0080	0.0060	ND	0.0300	ND	ND	ND
Silver	0.1 mg/L ²³	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1350	ND	ND	ND
Thallium	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin Vanadium	22 mg/L ⁵ 0.26 mg/L ⁵	ND ND	ND ND	ND ND	NT 0.001	ND ND	ND ND	ND ND	ND 0.0030	ND ND	ND 0.0040	ND ND	0.0980	ND 0.0200	0.1800 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.0020	ND ND	ND ND	ND ND	ND 0.0020	ND ND	ND 0.0020	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc	2 mg/L	0.001	ND	0.007	0.026	0.009	0.0070	0.0060	0.0030	0.0100	0.0040	ND	0.0200	0.0200	ND	ND	0.0050	0.0070	ND	ND ND	ND	ND	ND ND	ND	ND	0.0080	0.0020	ND	ND	0.0080	0.0070	0.0080	0.0160	ND	0.0170	0.0147	0.0151
Acetone	610 HQL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	83	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	0.039 µgL ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Berzene	5 µgL'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	80 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform Carbon disulfide	80 на£ ¹ 1000 на£ ⁶	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon disunde Carbon tetrachloride	1000 μg/L 5 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
Chlorobenzene	100 H9L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6 µ9L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	80 uat.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 µg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane (DBCP)	0.2 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	0.05 HQL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND						
1,2-Dichlorobenzene 1,4-Dichlorobenzene	75 HQL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
trans-1.4-Dichloro-2-butene	HQL.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 HQL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 uaL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 µgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene 1,2-Dichloropropane	100 µgL1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichioropropene	ug.L	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
trans-1,3-Dichloropropene	HQL.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylberzene	700 HQL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 uaL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane Dihromomethane	30 µgL ² 61 µgL ⁶	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	5 Hat.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl ethyl ketone(2-Butanone)	4000 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	μgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 µg/L*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane Tetrachloroethylene(PCE)	0.3 µgL ² 5 µgL ³	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tokene	1000 HBF,	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND
1,1,1-Trichloroethane	200 H9L'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 µgL'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 µgL'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroflouromethane	2000 µgL²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	40 µgL²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	410 µgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride Xvlenes	2 μgL' 10000 μgL'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ayenes Methyl tert-butyl ether (MTBE)	20 - 40 HQL ⁴	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
y. any and (with)	/9"	.10																			.70																

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 3

SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-1

JUNE 2019 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

			Jun-19			Mar-19		Dec-18		Sep-18		Jun-18		Mar-18		Dec-17		Sep-17		Jun-17		Mar-17	
		Aquat	tic Life		Aqua	ic Life		Aquatic Life		Aquatic Life		Aquatic Life		Aquatic Life		Aquatic Life		Aquatic Life		Aquatic Life		Aquatic Life	
	Human Health	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Threshold	<u>Data</u>	Threshold	<u>Data</u>	Threshold	Data	Threshold	Data	Threshold	Data	Threshold	Data	Threshold	<u>Data</u>	Threshold	<u>Data</u>
<u>Parameter</u>	Threshold	(Acute)	(Chronic)		(Acute)	(Chronic)		(Acute) (Chronic)		(Acute) (Chronic)	(Acute) (Chronic)		(Acute) (Chronic)	,								
Antimony	0.006 mg/L ¹	0.4500	0.0100	ND	0.4500	0.0100	ND	0.4500 0.0100	0.002	0.4500 0.0100	ND	0.4500 0.0100	ND	0.4500 0.0100	ND	0.4500 0.0100	ND	0.4500 0.0100	0.006	0.4500 0.0100	0.002	0.4500 0.0100	0.006
Arsenic	0.01 mg/L ¹	0.3400	0.1500	0.0009	0.3400	0.1500	0.0002	0.3400 0.1500	ND	0.3400 0.1500	ND	0.3400 0.1500	0.010	0.3400 0.1500	0.004	0.3400 0.1500	0.004	0.3400 0.1500	ND	0.3400 0.1500	0.003	0.3400 0.1500	ND
Barium	2 mg/L ¹	No Data	No Data	0.068	No Data	No Data	0.023	No Data No Data	0.031	No Data No Data	0.036	No Data No Data	0.040	No Data No Data	0.022	No Data No Data	0.022	No Data No Data	0.473	No Data No Data	0.025	No Data No Data	0.016
Beryllium	0.004 mg/L ¹	0.0075	0.00017	ND	0.0075	0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND	0.0075 0.00017	ND
Cadmium	0.005 mg/L ¹	0.0040	0.00040	ND	0.0022	0.00027	ND	0.0036 0.00037	ND	0.00256 0.00029	ND	0.00330 0.00035	ND	0.00213 0.00026	ND	0.00146 0.00020	ND	0.00585 0.00053	0.080	0.00073 0.00012	0.001	0.00143 0.00019	ND
Chromium	0.1 mg/L ¹	0.0160	0.0110	0.0005	0.0160	0.0110	0.0002	0.0160 0.0110	ND	0.0160 0.0110	ND	0.0160 0.0110	ND	0.0160 0.0110	ND	0.0160 0.0110	ND	0.0160 0.0110	0.004	0.0160 0.0110	0.001	0.0160 0.0110	ND
Cobalt	0.73 mg/L ⁵	No Data	No Data	0.0014	No Data	No Data	0.0002	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	0.006	No Data No Data	0.004	No Data No Data	ND
Copper	1.3 mg/L ¹	0.0263	0.0165	ND	0.0150	0.0099	ND	0.0236 0.01494	ND	0.01696 0.01106	ND	0.02166 0.01381	ND	0.01420 0.00941	ND	0.00984 0.00675	ND	0.03784 0.02290	ND	0.00502 0.00367	ND	0.00963 0.00662	ND
Lead	0.015 mg/L ¹	0.1390	0.0054	0.0003	0.0730	0.0028	0.0003	0.1231 0.00480	ND	0.08441 0.00329	ND	0.11162 0.00435	ND	0.06881 0.00268	ND	0.04494 0.00175	ND	0.20858 0.00813	0.019	0.02038 0.00079	0.002	0.04384 0.00171	ND
Nickel	0.1 mg/L ²	0.8559	0.0951	0.003	0.5154	0.0572	0.001	0.7771 0.08631	0.002	0.57698 0.06409	0.003	0.71891 0.07985	0.001	0.49190 0.05463	0.003	0.35379 0.03930	0.003	1.18607 0.13174	0.014	0.19357 0.02150	0.005	0.34711 0.03855	0.003
Selenium	0.05 mg/L ¹	0.0200	0.0050	ND	0.0200	0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND	0.0200 0.0050	ND
Silver	0.1 mg/L ²	0.0118	No Data	ND	0.0042	No Data	ND	0.0097 No Data	ND	0.00527 No Data	ND	0.00825 No Data	ND	0.00381 No Data	ND	0.00195 No Data	ND	0.02283 No Data	ND	0.00057 No Data	ND	0.00188 No Data	ND
Thallium	0.002 mg/L ¹	0.0460	0.0010	ND	0.0460	0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND	0.0460 0.0010	ND
Tin	22 mg/L ⁵	No Data	No Data	ND	No Data	No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND
Vanadium	0.26 mg/L ⁵	No Data	No Data	ND	No Data	No Data	ND	No Data No Data	0.001	No Data No Data	0.001	No Data No Data	ND	No Data No Data	ND	No Data No Data	ND	No Data No Data	0.117	No Data No Data	0.006	No Data No Data	ND
Zinc	5 mg/L ³	0.2144	0.2161	0.006	0.1290	0.1300	0.002	0.1946 0.19622	0.012	0.14444 0.14562	0.005	0.18003 0.18151	0.015	0.12311 0.12412	0.009	0.08850 0.08923	0.009	0.29725 0.29968	0.097	0.04838 0.04877	0.020	0.08683 0.08754	0.006
Mercury	0.002 mg/L ¹	0.0014	0.00077	ND	0.0014	0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND	0.0014 0.00077	ND
Hardness (as CaCO3)	mg/L	•		204			112		182		128		166		106		71.8		300		35.2		70.2
Natural Log of Hardness for Calculation			5.318			4.718		5.204		4.852	2	5.112		4.663		4.274		5.704		3.561		4.251	
Iron	0.3 mg/L ³	No Data	1	10.7	No Data	1	0.521]															
Ammonia	30 mg/L ²	33.5	3.38	0.1	29.8	6.44	0.2																
TKN				0.4			0.4																
Total Phosphorus	0.025 mg/L ⁷			ND			0.05																

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

7. Ambient water quality standard.

Total Phosphorus Total Nitrogen

No threshold value has been provided for parameters not identified in the sources listed above

Aquatic Life criteria provided above from RIDEM Water Quality Regulations. "No Data" represents parameters for which no aquatic life criteria has been established.

"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/ or pH was outside of the range for which a threshold value is established.

TABLE 3 (CONT.)

SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-2

JUNE 2019 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

			Jun-19			Mar-19			Dec-18			Sep-18			Jun-18			Mar-18			Dec-17			Sep-17			Jun-17			Mar-17	
		Aquat	tic Life		Aquat	tic Life		Aqua	tic Life		Aqua	atic Life		Aqua	tic Life		Aqua	tic Life		Aqua	ic Life		<u>Aqua</u>	tic Life		Aquat	ic Life		Aquat	tic Life	
	Human Health	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	eshold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>	Thre	shold	<u>Data</u>
<u>Parameter</u>	Threshold	(Acute)	(Chronic)		(Acute)	(Chronic)		(Acute)	(Chronic)		(Acute)	(Chronic)																			
Antimony	0.006 mg/L ¹	0.4500	0.0100	ND	0.4500	0.0100	ND	0.4500	0.0100	0.002	0.4500	0.0100	0.003	0.4500	0.0100	0.001	0.4500	0.0100	ND	0.4500	0.0100	0.003	0.4500	0.0100	ND	0.4500	0.0100	0.002	0.4500	0.0100	ND
Arsenic	0.01 mg/L ¹	0.3400	0.1900	0.0006	0.3400	0.1900	0.0003	0.3400	0.1900	ND	0.3400	0.1900	ND	0.3400	0.1900	0.005	0.3400	0.1900	ND	0.3400	0.1900	ND	0.3400	0.1900	ND	0.3400	0.1900	ND	0.3400	0.1900	ND
Barium	2 mg/L ¹	No Data	No Data	0.011	No Data	No Data	0.006	No Data	No Data	0.006	No Data	No Data	0.017	No Data	No Data	0.011	No Data	No Data	0.009	No Data	No Data	0.008	No Data	No Data	0.013	No Data	No Data	0.010	No Data	No Data	0.008
Beryllium	0.004 mg/L ¹	0.0075	0.00017	ND	0.0075	0.00017	ND	0.0075	0.00017	ND	0.0075	0.00017	ND																		
Cadmium	0.005 mg/L ¹	0.0006	0.00011	ND	0.0004	0.00008	ND	0.0004	0.0001	ND	0.0007	0.0001	ND	0.0004	0.0001	ND	0.0003	0.0001	ND	0.0006	0.0001	ND	0.0004	0.0001	ND	0.0003	0.0001	ND	0.0004	0.0001	ND
Chromium	0.1 mg/L ¹	0.0160	0.0110	0.0007	0.0160	0.0110	0.0005	0.0160	0.0110	ND	0.0160	0.0110	ND	0.0160	0.0110	0.001	0.0160	0.0110	ND												
Cobalt	0.73 mg/L ⁵	No Data	No Data	0.0025	No Data	No Data	0.0002	No Data	No Data	ND	No Data	No Data	0.002	No Data	No Data	ND	No Data	No Data	ND	No Data	No Data	ND	No Data	No Data	0.001	No Data	No Data	0.002	No Data	No Data	ND
Copper	1.3 mg/L ¹	0.0043	0.00321	ND	0.0030	0.00232	ND	0.0029	0.0022	ND	0.0050	0.0036	ND	0.0026	0.0020	ND	0.0024	0.0019	ND	0.0040	0.0030	ND	0.0029	0.0023	ND	0.0025	0.0019	ND	0.0027	0.0021	ND
Lead	0.015 mg/L ¹	0.0171	0.00067	0.0009	0.0112	0.00043	0.0003	0.0105	0.0004	ND	0.0202	0.0008	ND	0.0092	0.0004	ND	0.0085	0.0003	ND	0.0157	0.0006	ND	0.0108	0.0004	ND	0.0087	0.0003	0.002	0.0098	0.0004	0.002
Nickel	0.1 mg/L ²	0.1696	0.01883	0.002	0.1230	0.01366	0.001	0.1174	0.0130	0.002	0.1922	0.0213	0.002	0.1061	0.0118	0.003	0.1004	0.0112	0.002	0.1590	0.0177	0.001	0.1200	0.0133	0.002	0.1020	0.0113	0.004	0.1118	0.0124	0.003
Selenium	0.05 mg/L ¹	0.0200	0.0050	ND	0.0200	0.0050	ND	0.0200	0.0050	ND	0.0200	0.0050	ND																		
Silver	0.1 mg/L ²	0.0004	No Data	ND	0.0002	No Data	ND	0.0002	No Data	ND	0.0006	No Data	ND	0.0002	No Data	ND	0.0002	No Data	ND	0.0004	No Data	ND	0.0002	No Data	0.002	0.0002	No Data	ND	0.0002	No Data	ND
Thallium	0.002 mg/L ¹	0.0460	0.0010	ND	0.0460	0.0010	ND	0.0460	0.0010	ND	0.0460	0.0010	ND																		
Tin	22 mg/L ⁵	No Data	No Data	ND	No Data	No Data	ND	No Data	No Data	ND	No Data	No Data	ND																		
Vanadium	0.26 mg/L ⁵	No Data	No Data	0.0013	No Data	No Data	0.0006	No Data	No Data	ND	No Data	No Data	0.001	No Data	No Data	0.002	No Data	No Data	ND	No Data	No Data	ND	No Data	No Data	0.002	No Data	No Data	0.002	No Data	No Data	0.002
Zinc	5 mg/L ³	0.0424	0.0427	0.006	0.0307	0.0310	0.003	0.0293	0.0296	0.012	0.0480	0.0484	0.006	0.0265	0.0267	0.019	0.0251	0.0253	0.014	0.0397	0.0401	ND	0.0300	0.0302	0.006	0.0255	0.0257	0.010	0.0279	0.0281	0.011
Mercury	0.002 mg/L ¹	0.0014	0.00077	ND	0.0014	0.00077	ND	0.0014	0.00077	ND	0.0014	0.00077	ND																		
Hardness (CaCO3)	mg/L			30.1			20.6			19.5			34.9			17.3			16.2			27.9			20			16.5			18.4
Natural Log of Hardness for Calculation	_			3.405			3.025			2.970			3.552	2		2.851			2.785			3.329			2.996	i		2.803			2.912
Iron	0.3 mg/L ³	No Data	1	3.05	No Data	1	0.516																								
Ammonia	30 mg/L ²	O.R.	O.R.	0.4	O.R.	O.R.	ND																								

1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

1.0

ND

1.000

0.5

ND

0.500

- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.
- 7. Ambient water quality standard.

TKN

Total Phosphorus

Total Nitrogen

No threshold value has been provided for parameters not identified in the sources listed above

0.025 mg/L

Aquatic Life criteria provided above from RIDEM Water Quality Regulations. "No Data" represents parameters for which no aquatic life criteria has been established.

"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/ or pH was outside of the range for which a threshold value is established.

TABLE 3 (CONT.) SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-3 JUNE 2019 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

<u>Life</u> <u>old</u> <u>Data</u> nronic) 0100 ND 1500 ND D Data 0.015
0100 ND 01500 ND 0 Data 0.015
.0100 ND .1500 ND .0 Data 0.015
.1500 ND Data 0.015
Data 0.015
0047 ND
00017 ND
0002 ND
.0110 ND
Data 0.008
0063 ND
0016 ND
<i>0</i> 365 0.019
.0050 ND
Data ND
.0010 ND
Data 0.030
Data ND
0829 0.050
00077 ND
65.8
4.187
0.0 0.0 0.0 0.0 0.0 No 0.0 No No

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

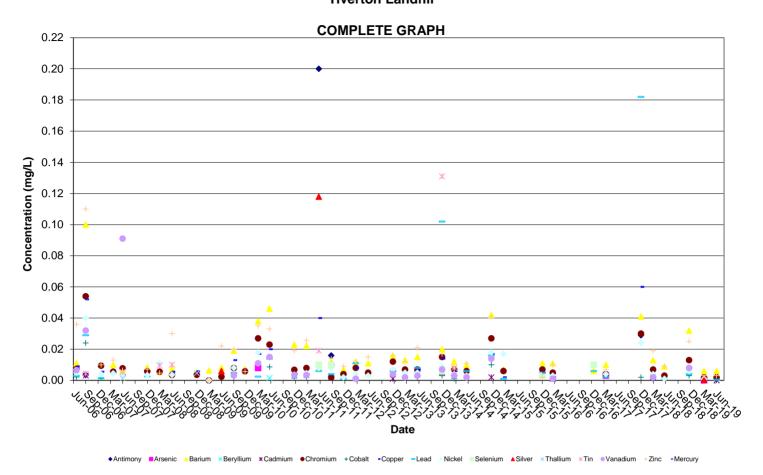
- s. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

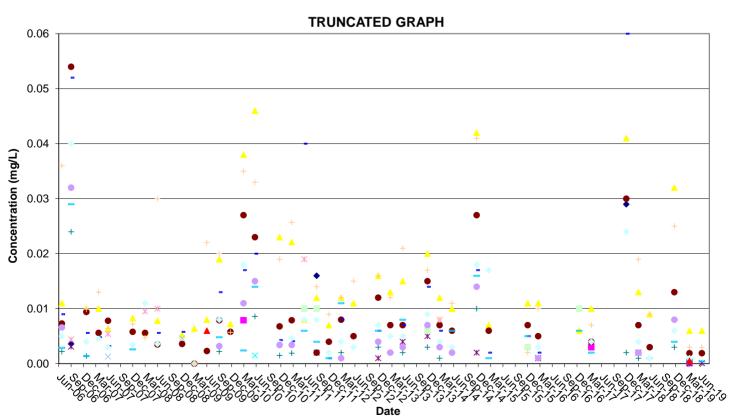
 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

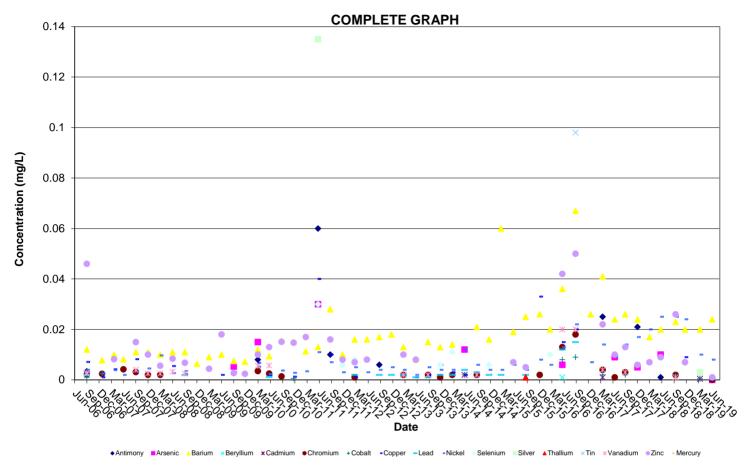
 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit. However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.
- 7. Ambient water quality standard.

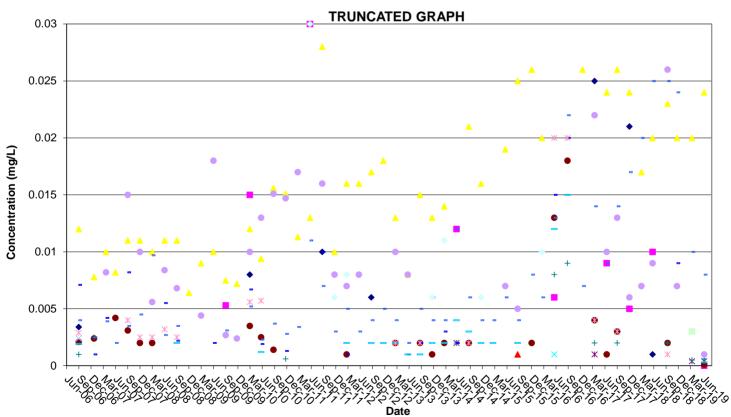
Total Nitrogen

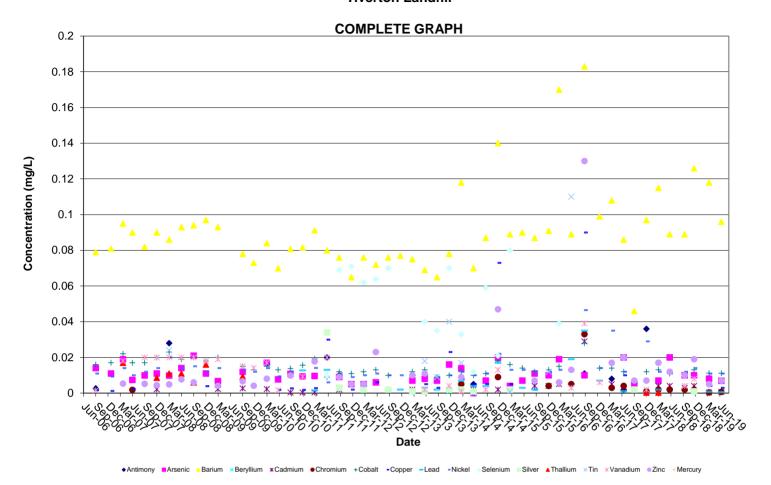

No threshold value has been provided for parameters not identified in the sources listed above

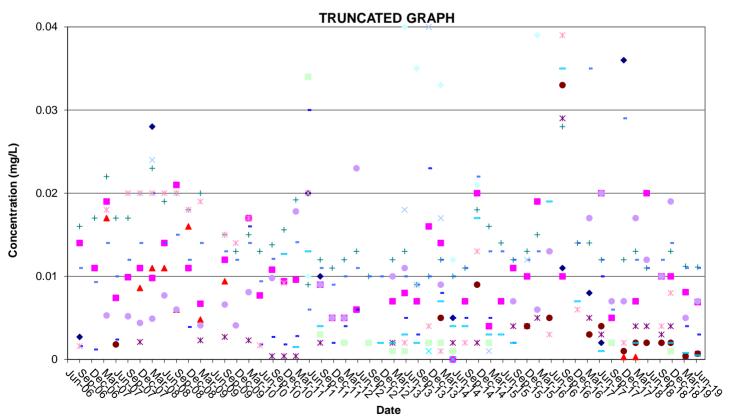

Aquatic Life criteria provided above from RIDEM Water Quality Regulations. "No Data" represents parameters for which no aquatic life criteria has been established.

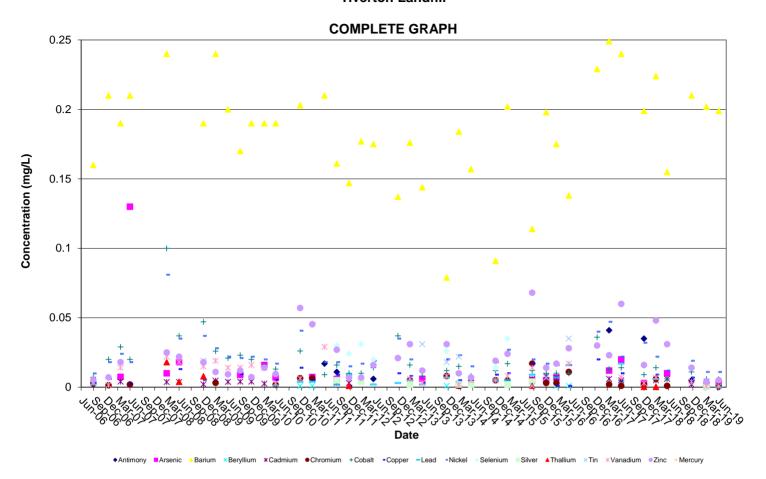
"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/ or pH was outside of the range for which a threshold value is established.

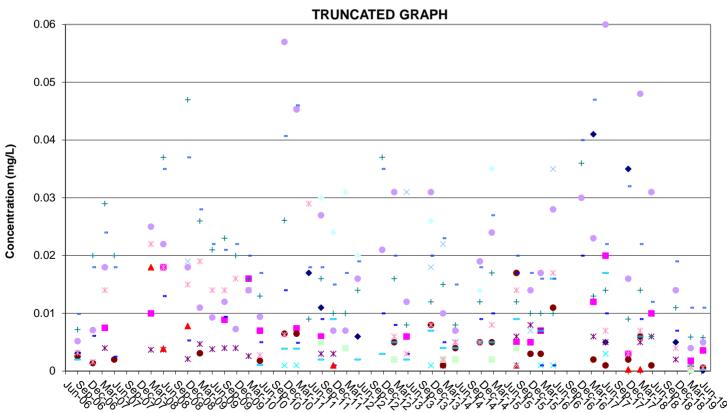

<u>ATTACHMENT NO. 3</u> HISTORICAL DETECTED METALS GRAPHS

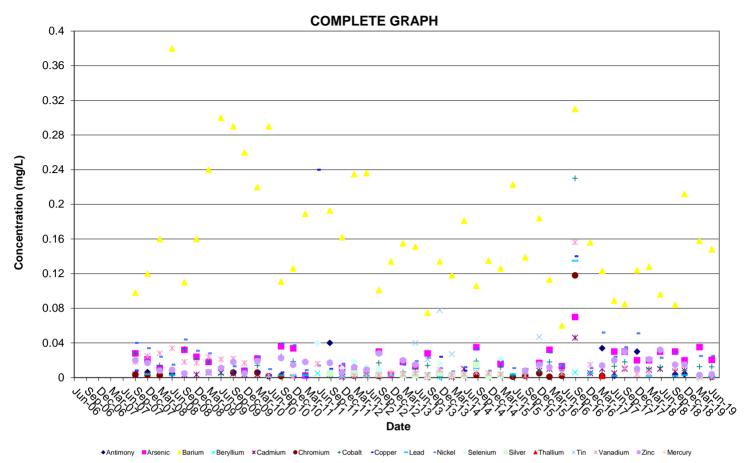

Detected Appendix A Metals in OW-9 Tiverton Landfill

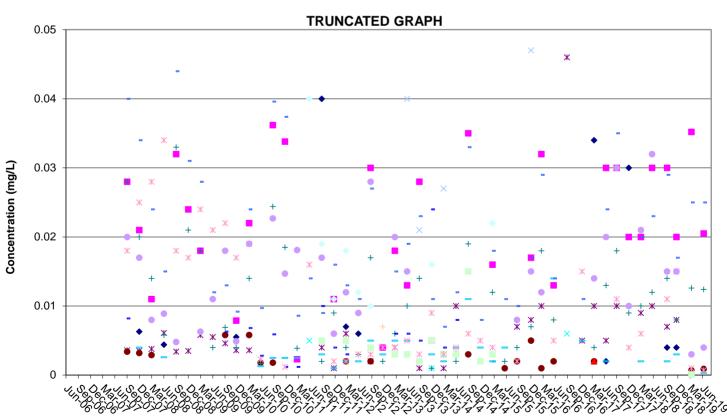


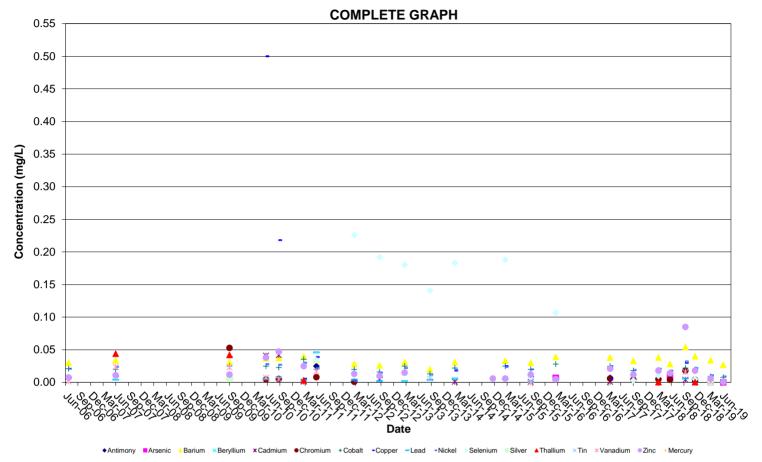

Detected Appendix A Metals in OW-12 Tiverton Landfill

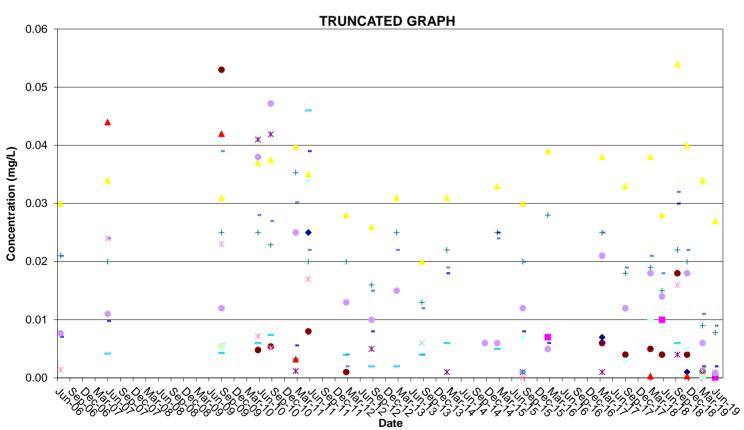


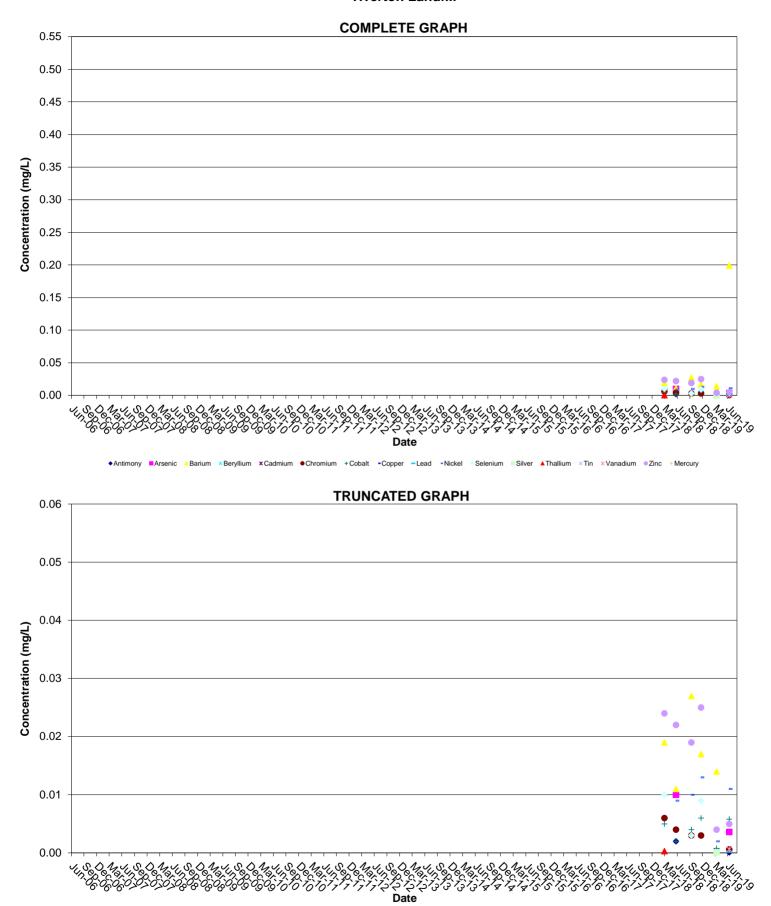

Detected Appendix A Metals in OW-13 Tiverton Landfill



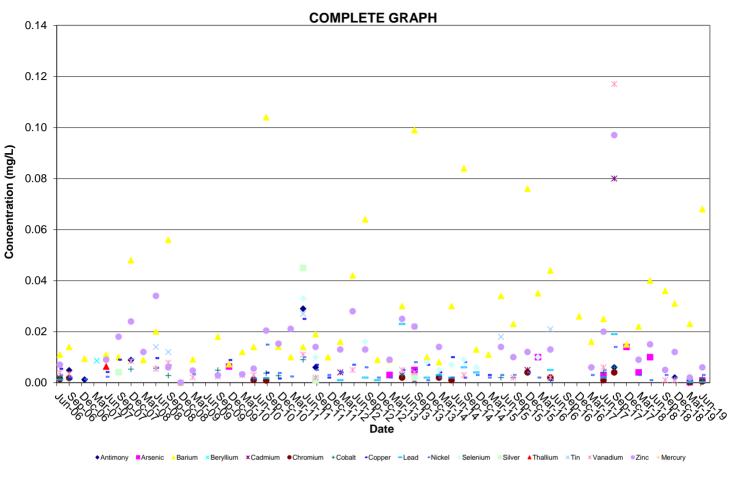

Detected Appendix A Metals in OW-14 Tiverton Landfill

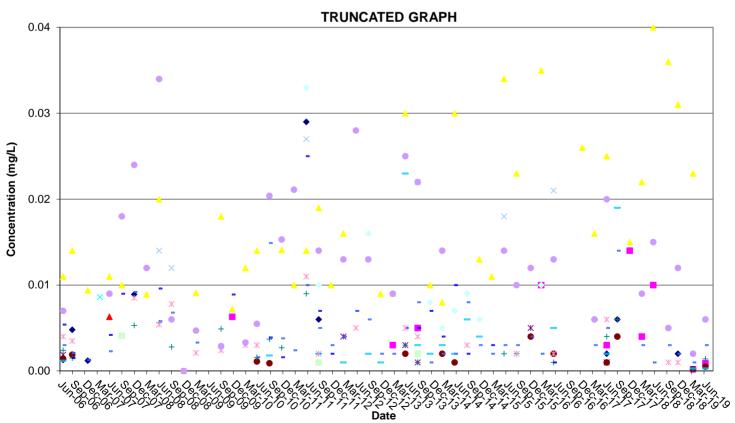

Detected Appendix A Metals in OW-15 Tiverton Landfill



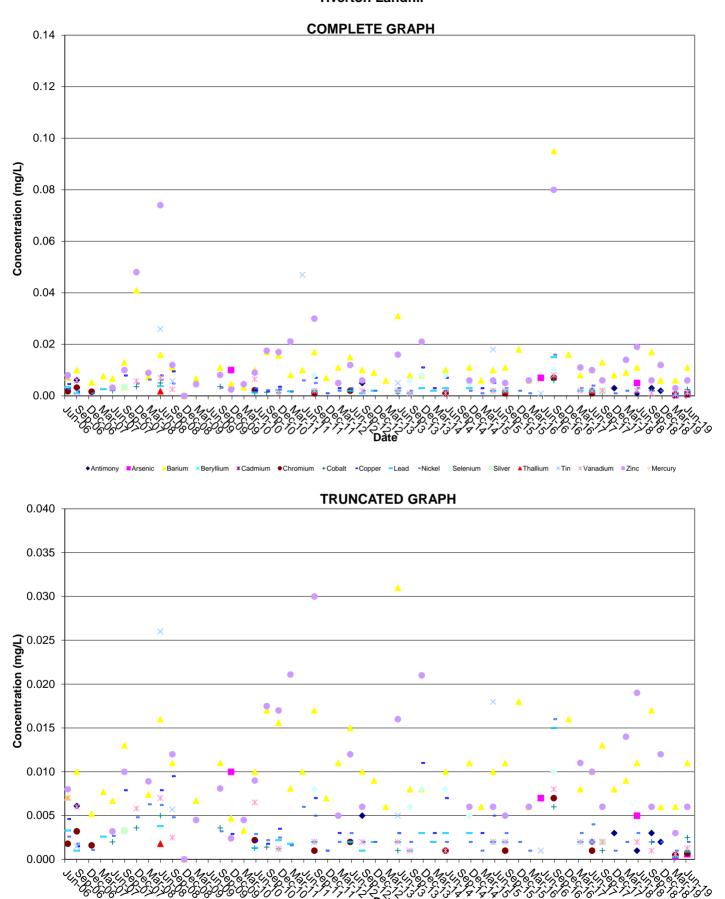

Date

Detected Appendix A Metals in OW-7 Tiverton Landfill

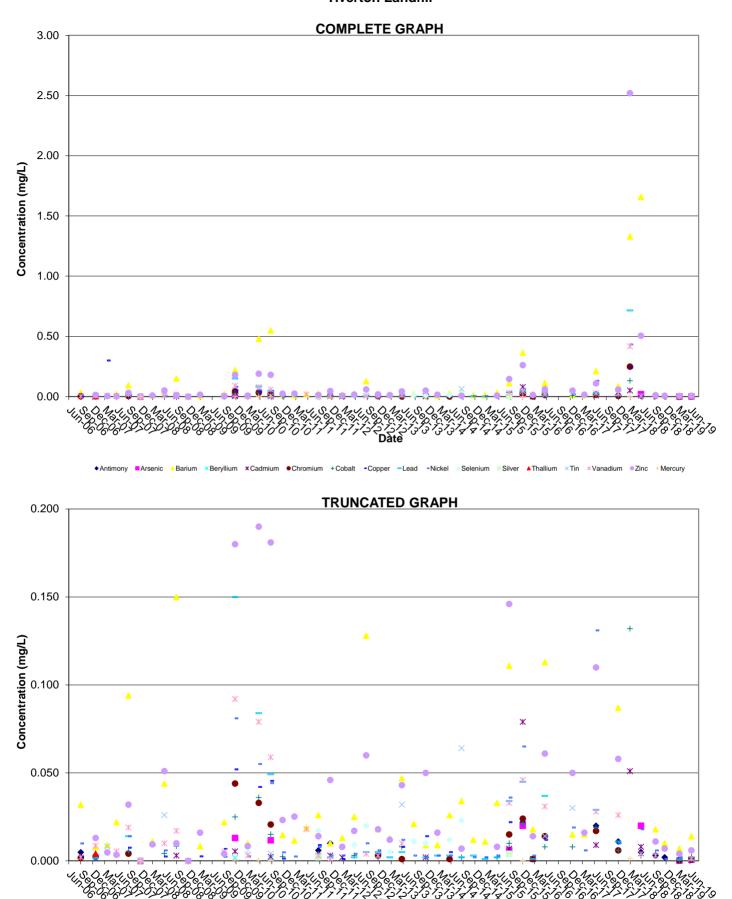




Detected Appendix A Metals in OW-16 Tiverton Landfill



Detected Appendix A Metals at Surface Water Sampling Location SW-1 Tiverton Landfill



Detected Appendix A Metals at Surface Water Sampling Location SW-2 Tiverton Landfill

Detected Appendix A Metals at Surface Water Sampling Location SW-3 Tiverton Landfill

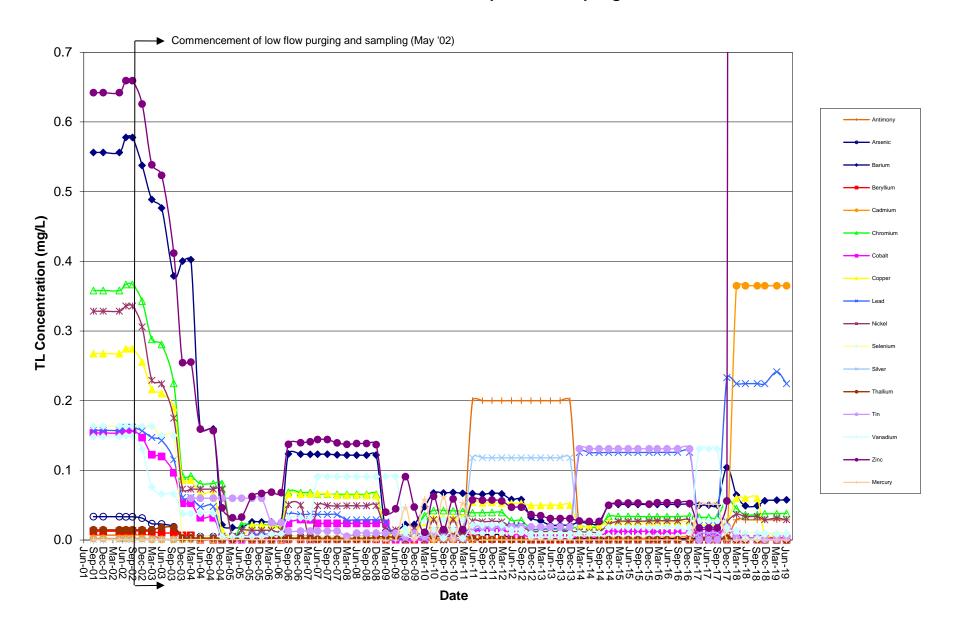
<u>ATTACHMENT NO. 4</u> TOLERANCE INTERVAL STATISTICAL EVALUATION

SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON JUN 2019 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

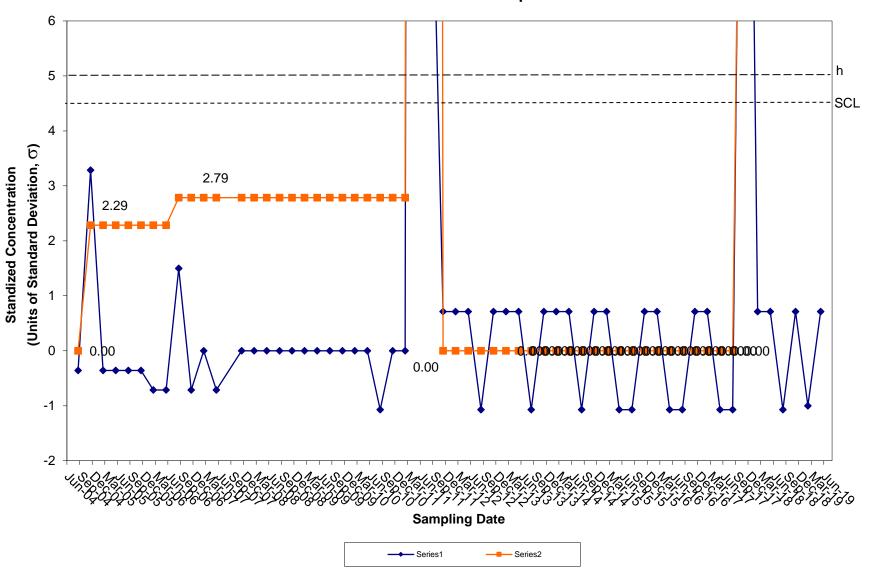
OW-16 ND ND 0.008 0.0002 0.0002 ND

0.0009 ND ND 0.002 ND ND ND ND 0.004

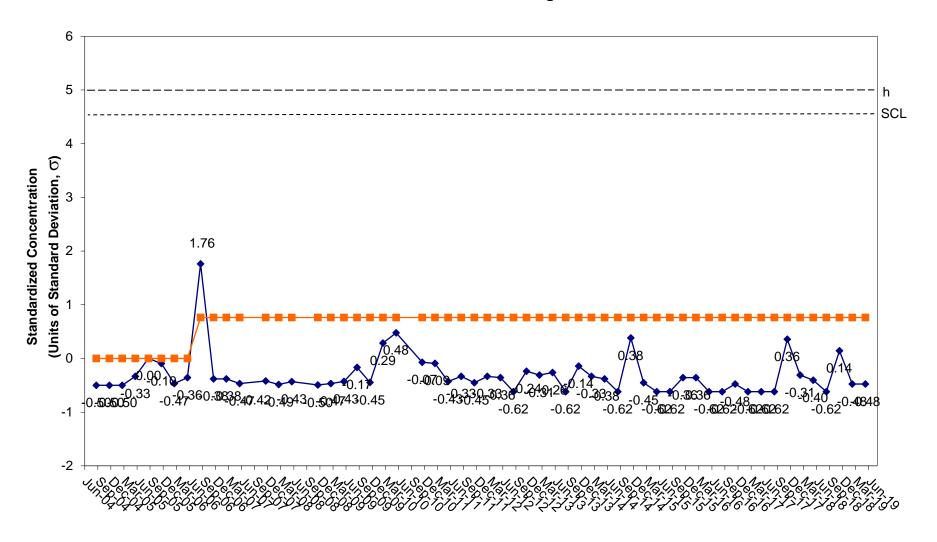

				Concentiation (un	into ao opecinea ior	Tillesiloid value	,			
		o	W-9		Background Well					
			ce Limit *	Threshold	_			-		
	<u>Parameter</u>	TL=A	VG+K*S	<u>Value</u>	OW-9	OW-7	OW-12	OW-13	OW-14	OW-15
METALS	Antimony	0.0290	mg/L	0.006 mg/L1	ND	0.0002	ND	ND	0.0001	ND
METALO	Arsenic	0.0030	mg/L	0.010 mg/L ¹	ND	0.0001	ND	0.0069	0.0036	0.0205
	Barium	0.0577	mg/L	2 mg/L ¹	0.0060	0.027	0.024	0.0960	0.1990	0.1480
	Beryllium	0.0003	mg/L	0.004 mg/L ¹	0.0001	ND	ND	ND	ND	ND
	Cadmium	0.3650	mg/L	0.005 mg/L ¹	0.0001	0.0005	0.0004	0.0007	ND	ND
	Chromium	0.0383	mg/L	0.1 mg/L ¹	0.0019	0.0008	0.0001	0.0007	0.0006	0.0009
	Cobalt	0.0030	mg/L	0.73 mg/L ⁵	ND	0.0078	0.0006	0.0111	0.0058	0.0124
	Copper	0.0080	mg/L	1.3 mg/L ¹	ND	0.002	ND	0.003	ND	ND
	Lead	0.2245	mg/L	0.015 mg/L ¹	0.0004	0.0008	0.0003	0.0005	0.0002	0.0003
	Mercury	0.0001	mg/L	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND
	Nickel	0.0295	mg/L	0.1 mg/L ²	ND	0.0009	0.008	0.011	0.011	0.025
	Selenium	0.0100	mg/L	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND
	Silver	0.0005	mg/L	0.1 mg/L ^{2,3}	ND	ND	ND	ND	ND	ND
	Thallium	0.0001	mg/L	0.002 mg/L ¹ 22 mg/L ⁵	ND	ND	ND	ND	ND	ND
	Tin Vanadium	0.0025 0.0080	mg/L mg/L	0.26 mg/L ⁵	ND ND	ND 0.0009	ND ND	ND ND	ND 0.0006	ND 0.0007
	Zinc	13.7198	mg/L	2 - 5 mg/L ^{2,3}	0.0030	0.0009	0.001	0.007	0.0006	0.0007
VOC'S	Acetone	13.7 198	illy/L	2-5 mg/L 610 μg/L ⁵	0.0030	0.0070	0.001	0.007	0.003	0.004
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Acrylonitrile			0.039 μg/L°						
	Benzene			5 μg/L¹						
	Bromochloromethane			80 μg/L ²						
	Bromodichloromethane (THM)			90 μg/L¹						
	Bromoform			80 μg/L ¹						
	Carbon disulfide			1000 μg/L ⁵						
	Carbon tetrachloride			5 μg/L¹						
	Chlorobenzene			100 μg/L ¹						
	Chloroethane			4.6 μg/L°						
	Chloroform			80 μg/L¹						
	Chlorodibromomethane (THM)			80 μg/L¹						
	1,2-Dibromo-3-chloropropane (DBCP)			0.2 μg/L¹						
	1,2-Dibromoethane (EDB)			0.05 μg/L¹ 600 μg/L¹						
	1,2-Dichlorobenzene 1,4-Dichlorobenzene			75 μg/L¹						
	trans-1,4-Dichloro-2-butene			/ 5 μg/L μg/L						
	1,1 -Dichloroethane			5 μg/L						
	1,2-Dichloroethane			5 μg/L ¹						
	1,1-Dichloroethylene			7 μg/L¹						
	cis-1,2-Dichloroethene			70 μg/L¹						
	trans-1,2-Dichloroethene			100 μg/L ¹						
	1,2-Dichloropropane			5 μg/L¹						
	cis-1,3-Dichloropropene			μg/L						
	trans-1,3-Dichloropropene			μg/L						
	Ethylbenzene			700 μg/L ¹						
	Methyl butyl ketone(2-Hexanone)			160 μg/L°						
	Bromomethane			10 μg/L ²						
	Chloromethane			30 μg/L ²						
	Dibromomethane Methylana ablarida			61 μg/L³ 5 μg/L¹						
	Methylene chloride Methyl ethyl ketone(2-Butanone)			5 μg/L 4000 μg/L²						
	Methyl iodide			4000 μg/L μg/L						
	4-Methyl-2-pentanone			μg/L						
	Styrene			100 μg/L ¹						
	1,1,1,2-Tetrachloroethane			70 μg/L ²						
	1,1,2,2-Tetrachloroethane			0.3 μg/L ²						
	Tetrachloroethylene(PCE)			5 μg/L¹						
	Toluene			1000 μg/L ¹						
	1,1,1-Trichloroethane			200 μg/L ¹						
	1,1,2-Trichloroethane			5 μg/L¹						
	Trichloroethylene(TCE)			5 μg/L¹						
	Trichloroflouromethane			2000 μg/L ²						
	1,2,3-Trichloropropane			40 μg/L²						
	Vinyl acetate			410 μg/L ⁵						
	Vinyl chloride			2 μg/L¹						
	Xylenes			10000 μg/L ¹						
	Mothyl tort-butyl other (MTRE)			30 - 40 HQ/L						

- Methyl tert-butyl ether (MTBE) 20 - 40 μg/L⁴ 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
 Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update 6. Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit.
- However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

" = Exceedance of TL ND = Not Detected

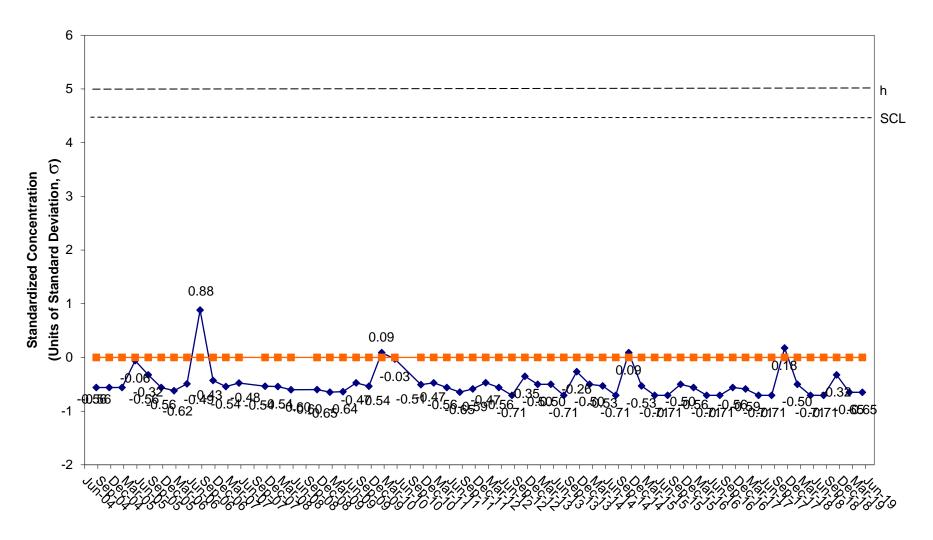

^{*} Tolerance Limit (TL) constructed from background (upgradient) well data from OW-9.

Historical Tolerance Limit Concentrations from Background Well Tiverton Landfill Compliance Sampling

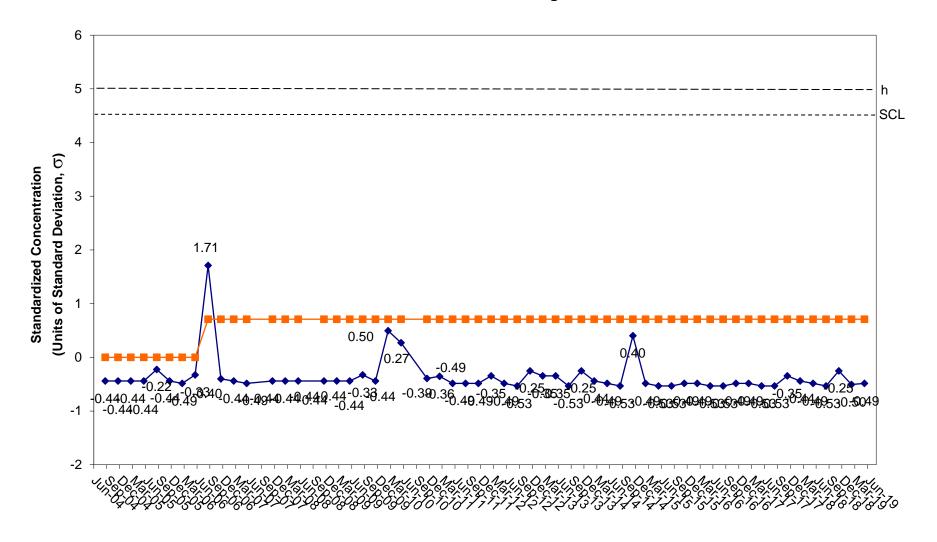


<u>ATTACHMENT NO. 5</u> CUSUM METHOD STATISTICAL EVALUATION

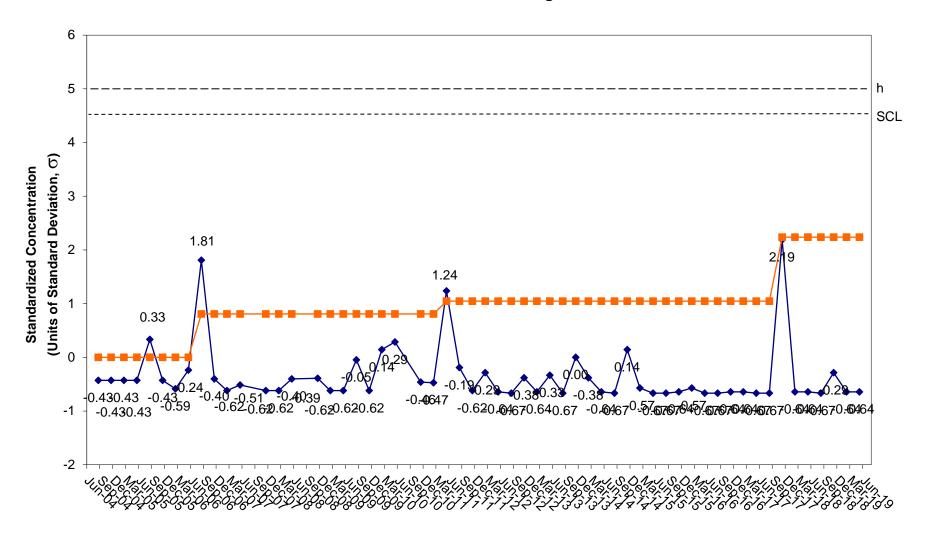
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Complaince Well OW-9


CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-9

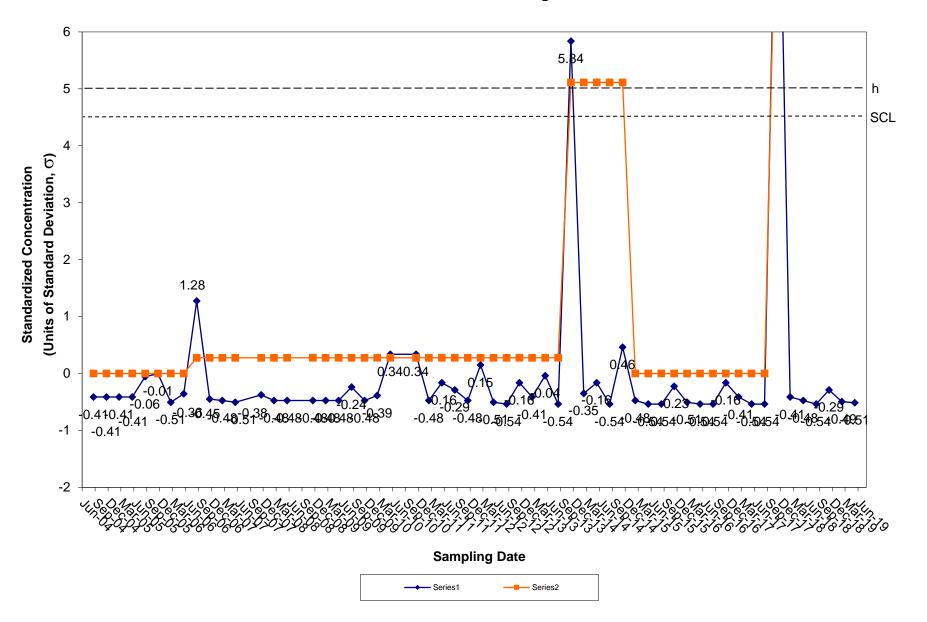
Sampling Date



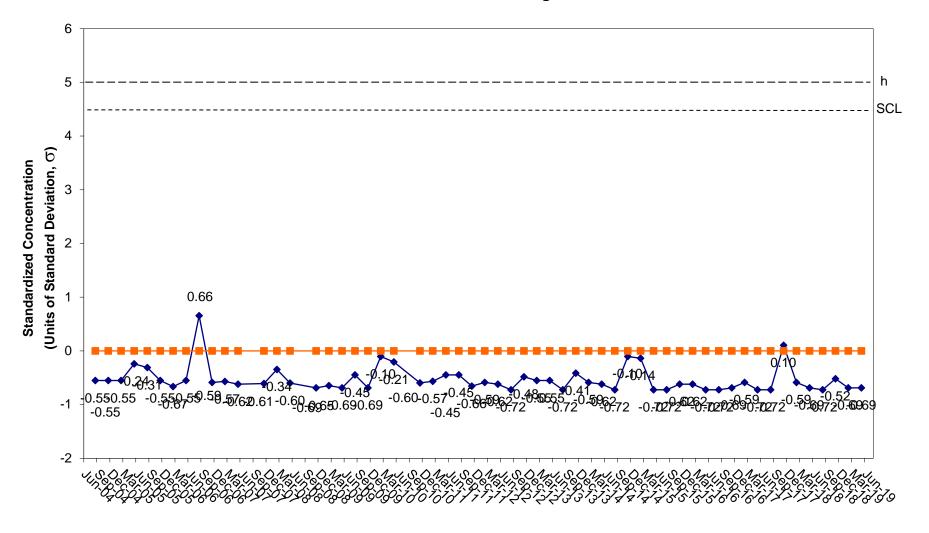
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-9



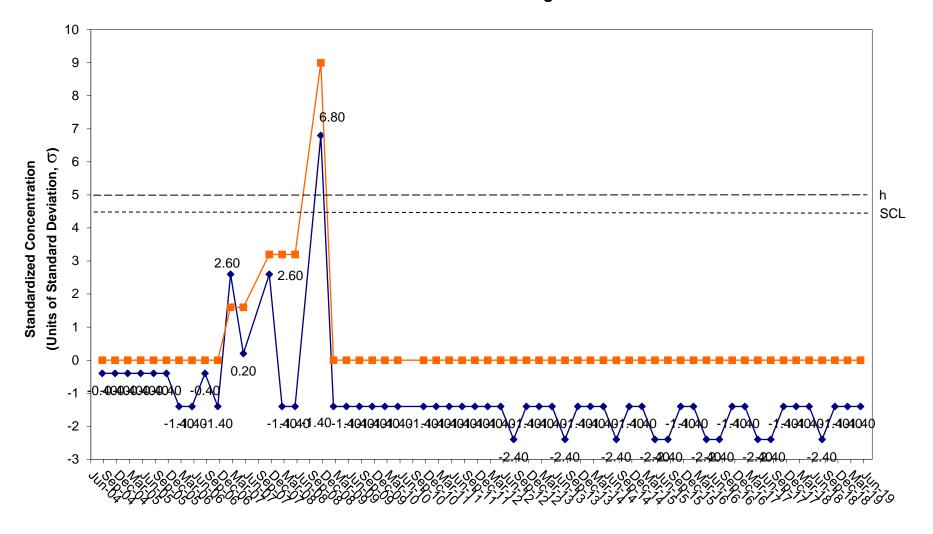
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Background Well OW-9



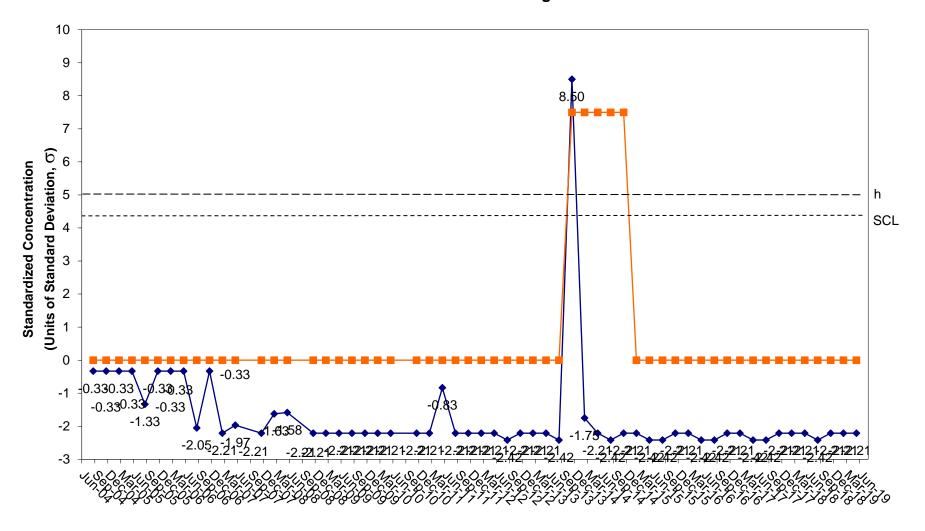
CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-9



CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-9

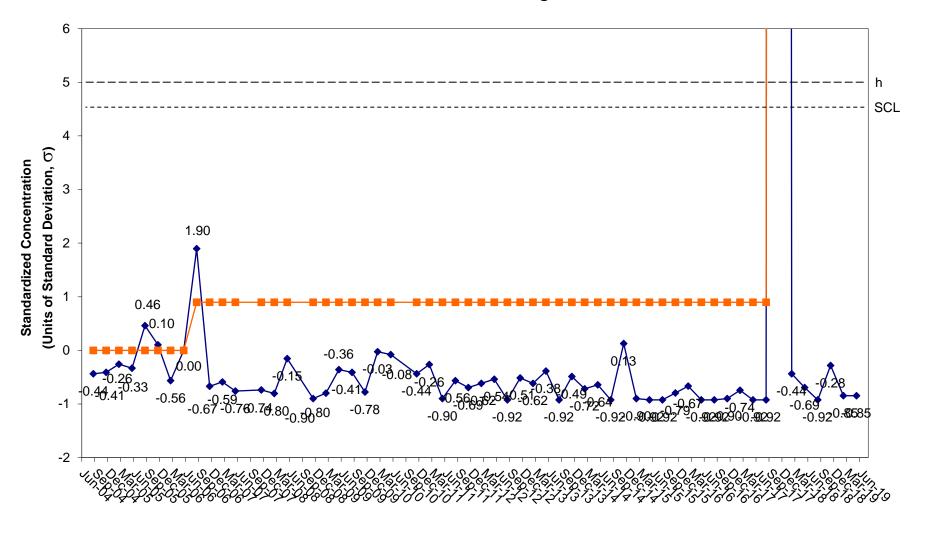


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-9

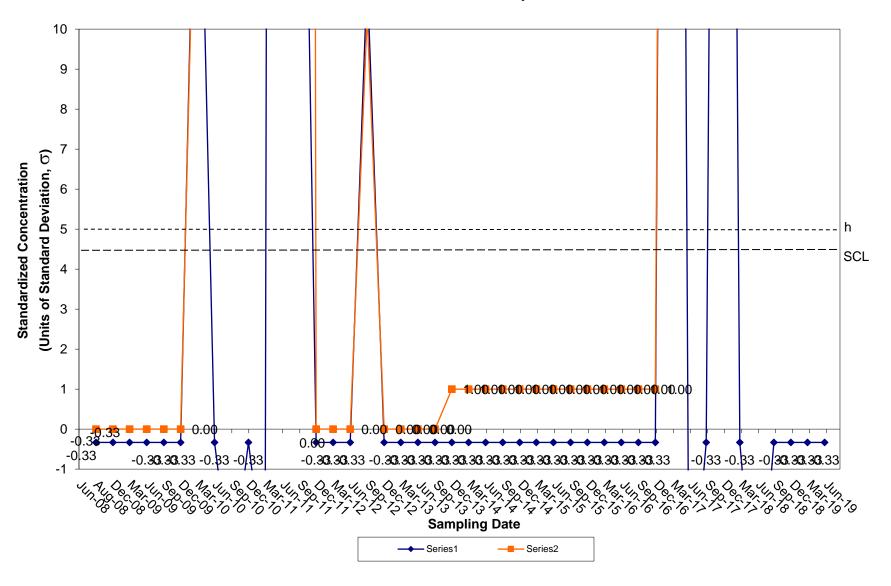


CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Background Well OW-9

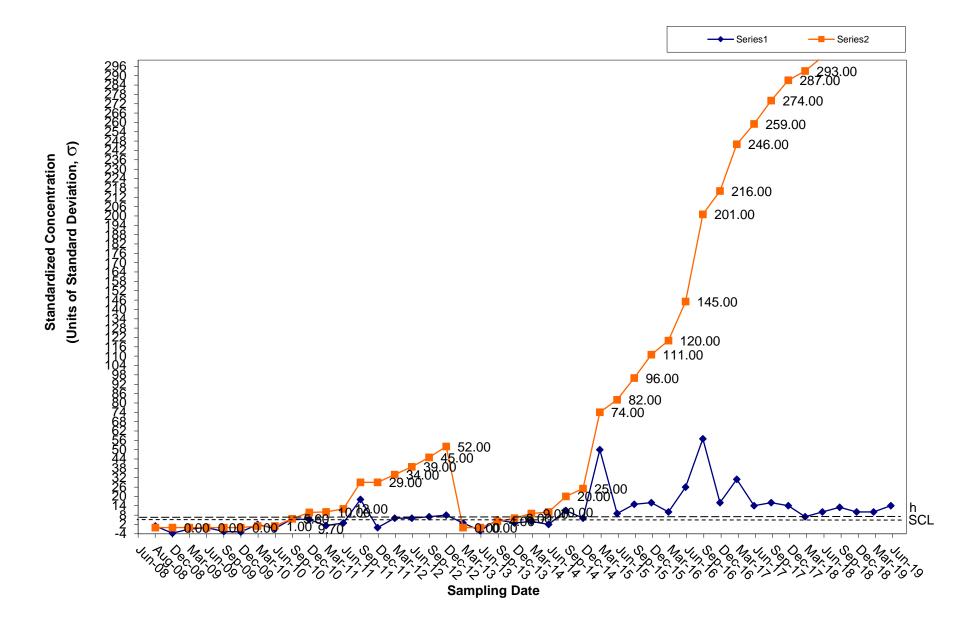
CUSUM Control Chart for Tin Tiverton Landfill Groundwater Background Well OW-9

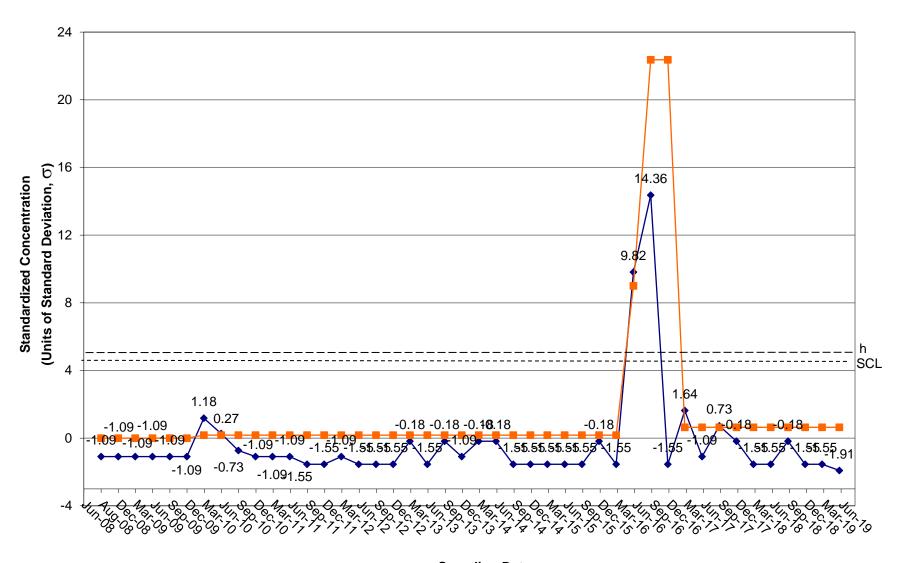


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-9



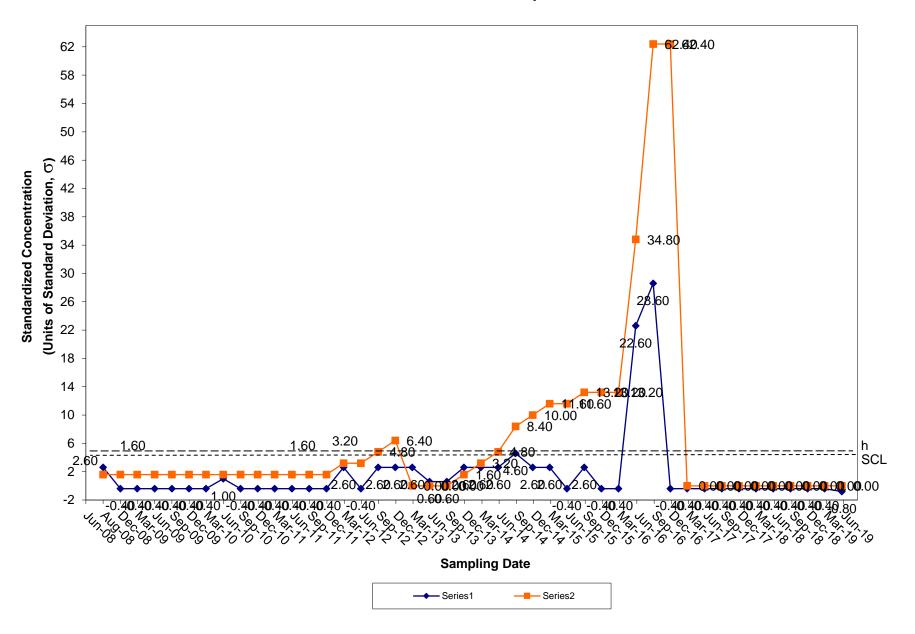
CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-9

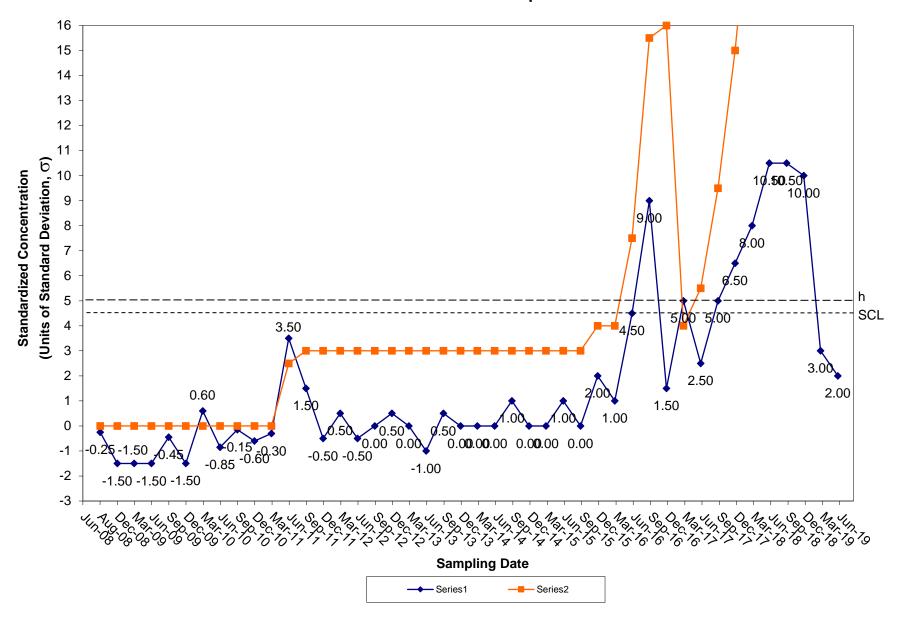


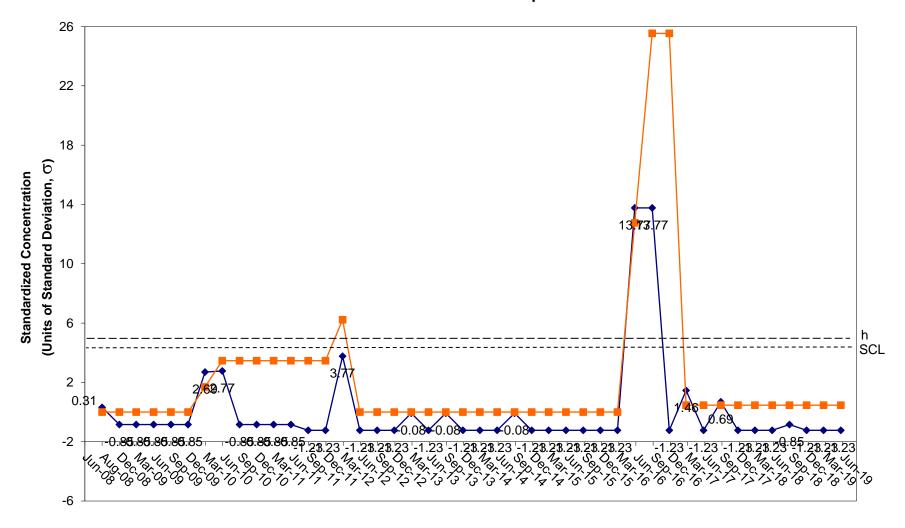

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-12

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-12

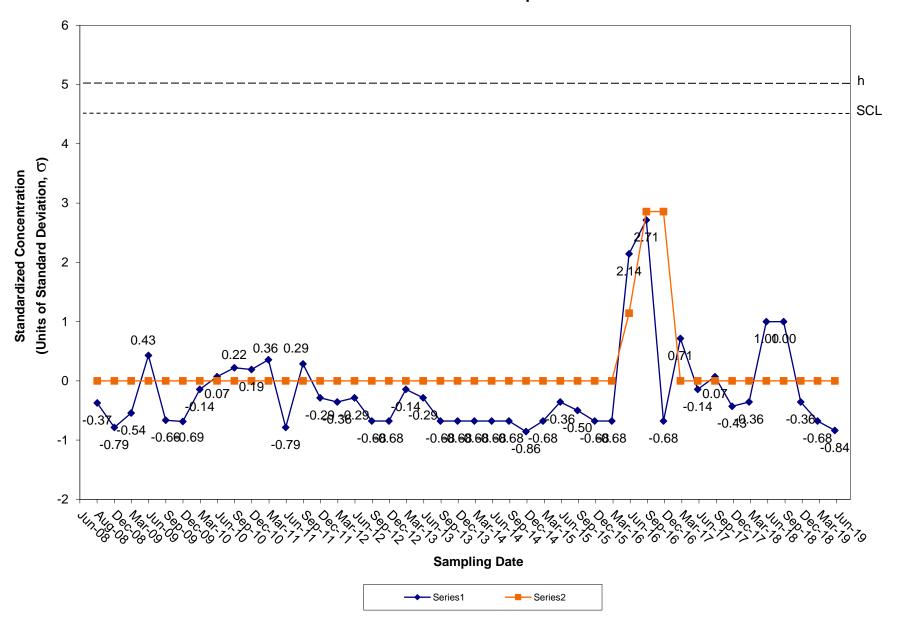
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-12



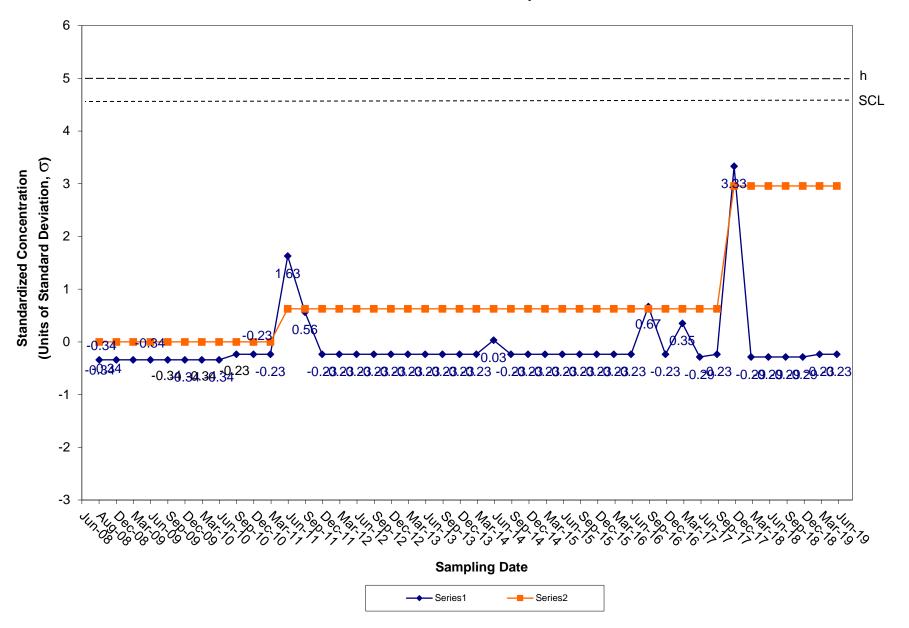

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-12

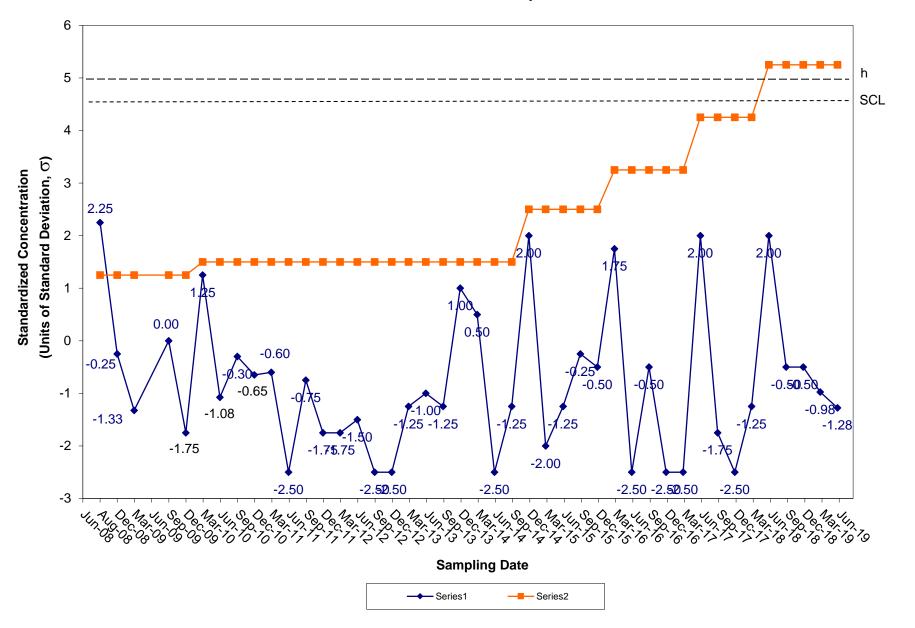

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-12

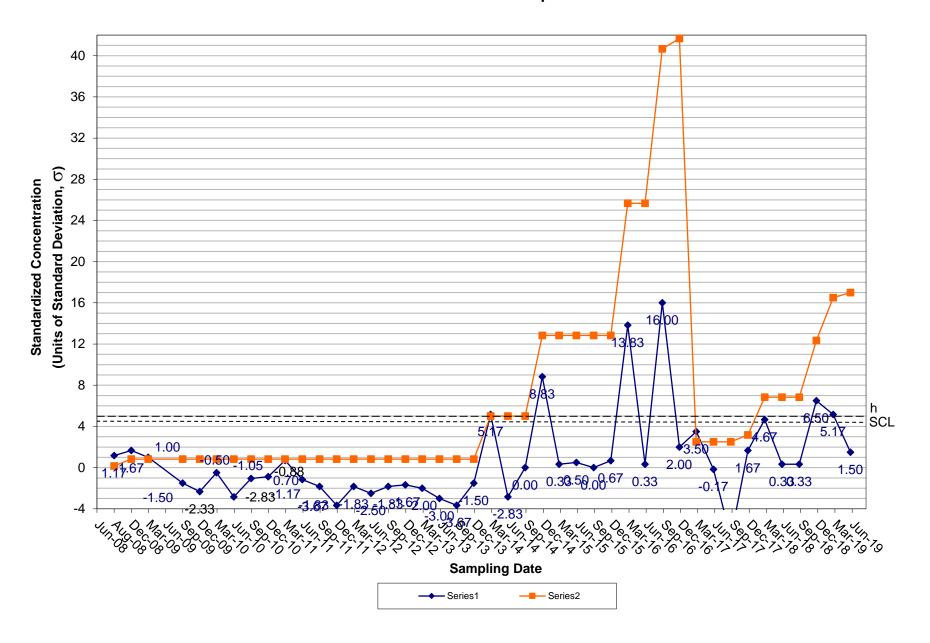
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-12

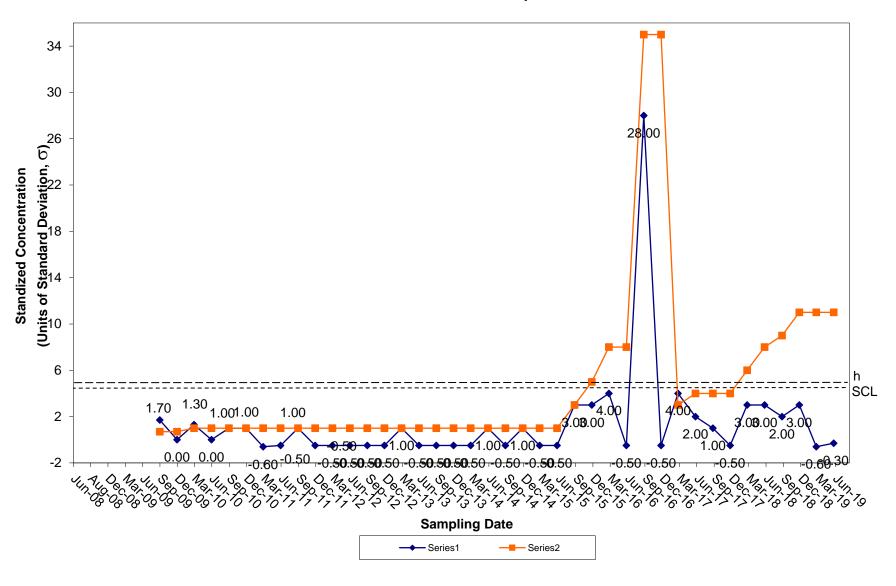


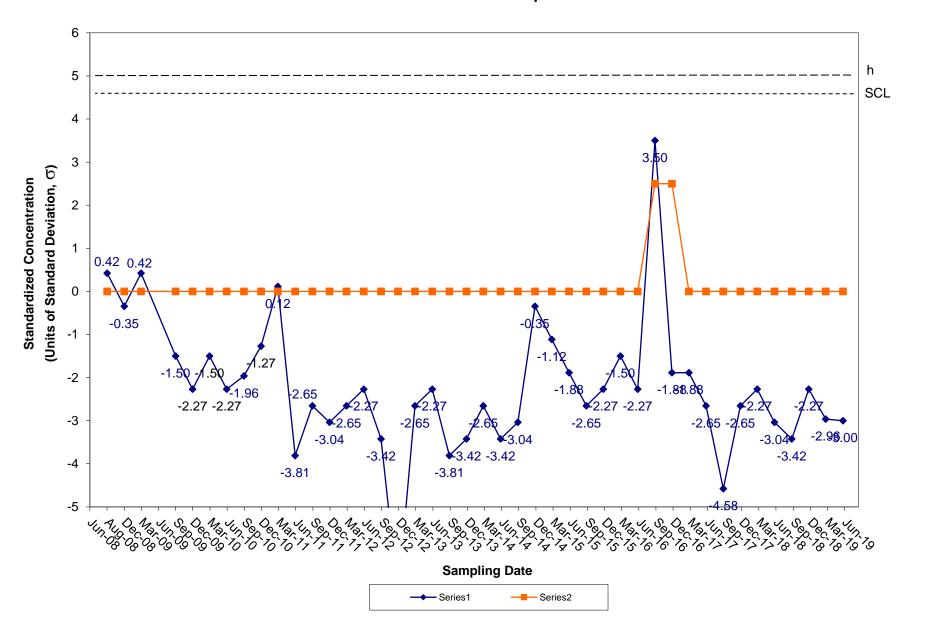
CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-12

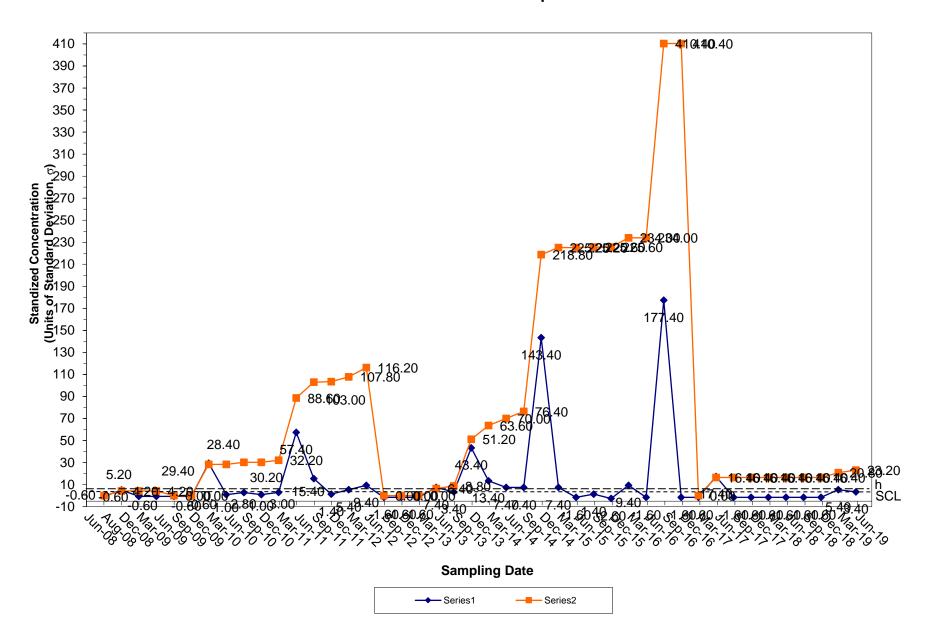


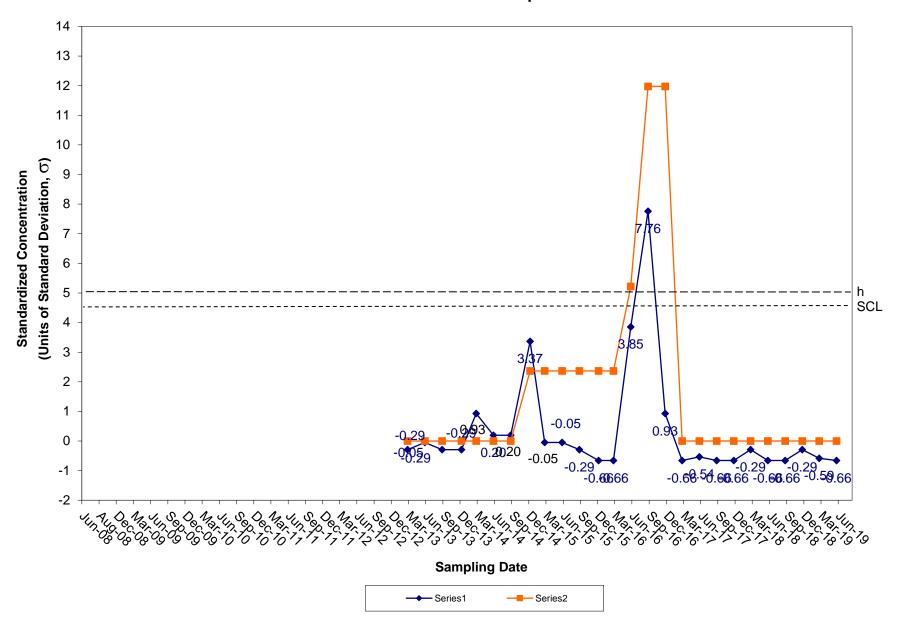

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-12

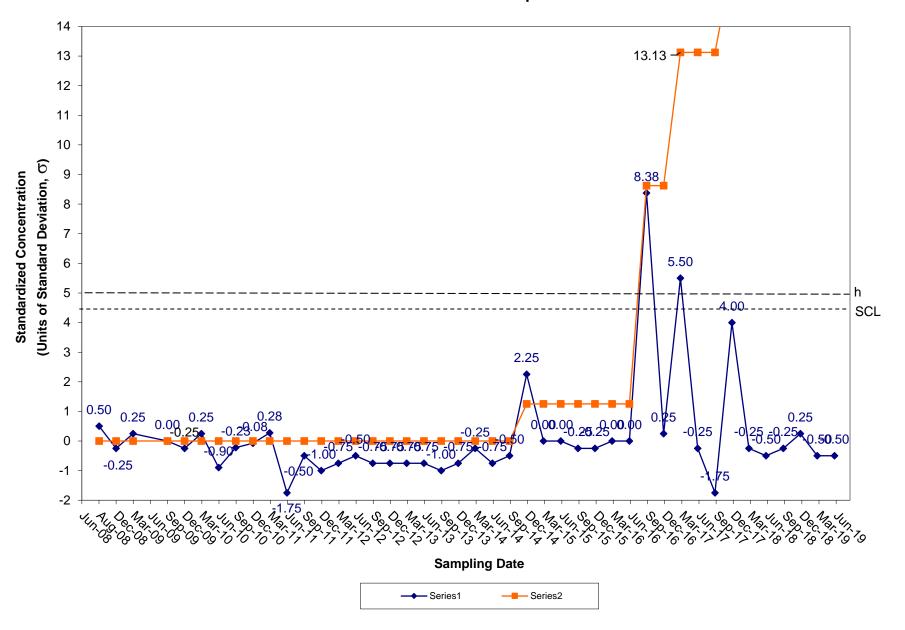

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-13

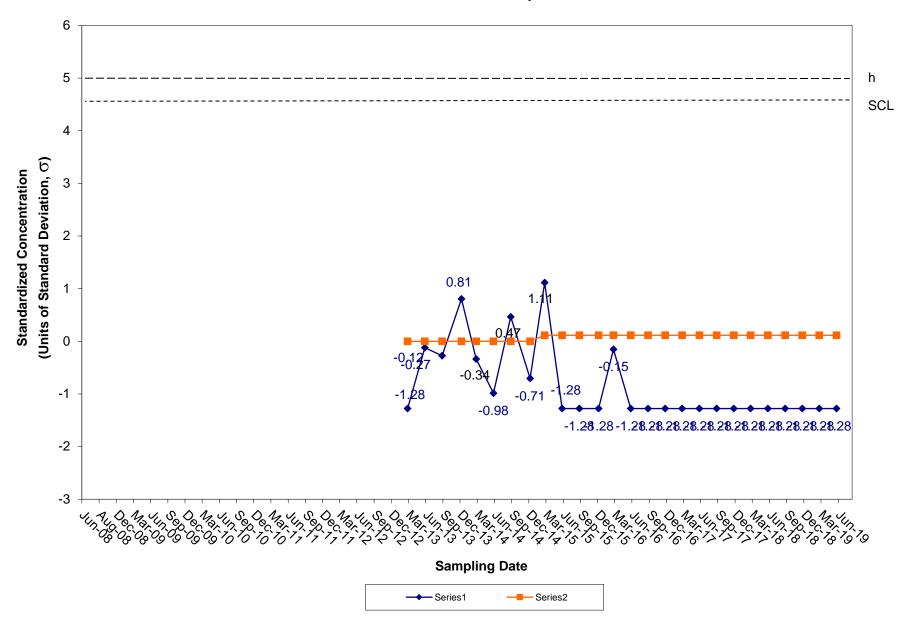

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-13

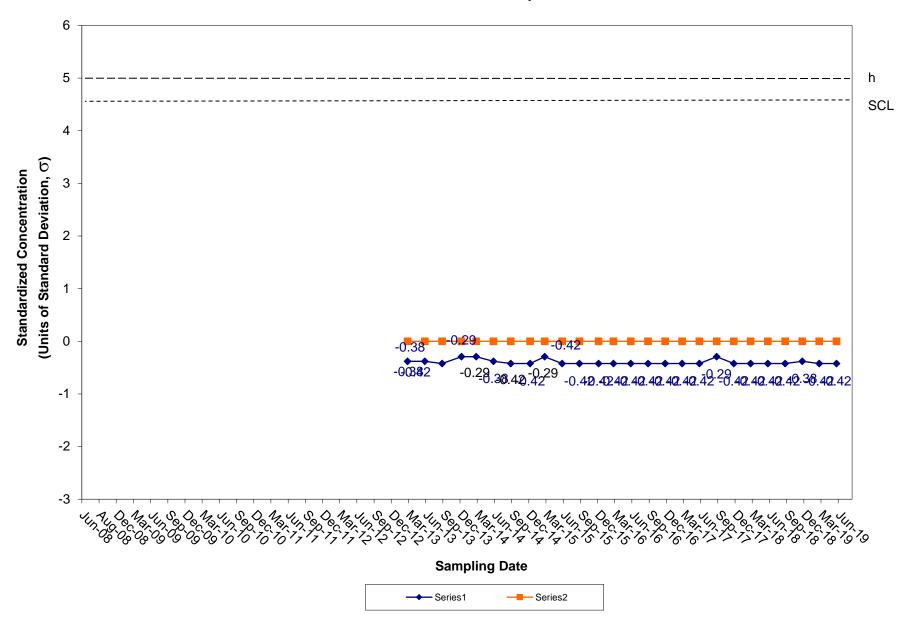

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-13

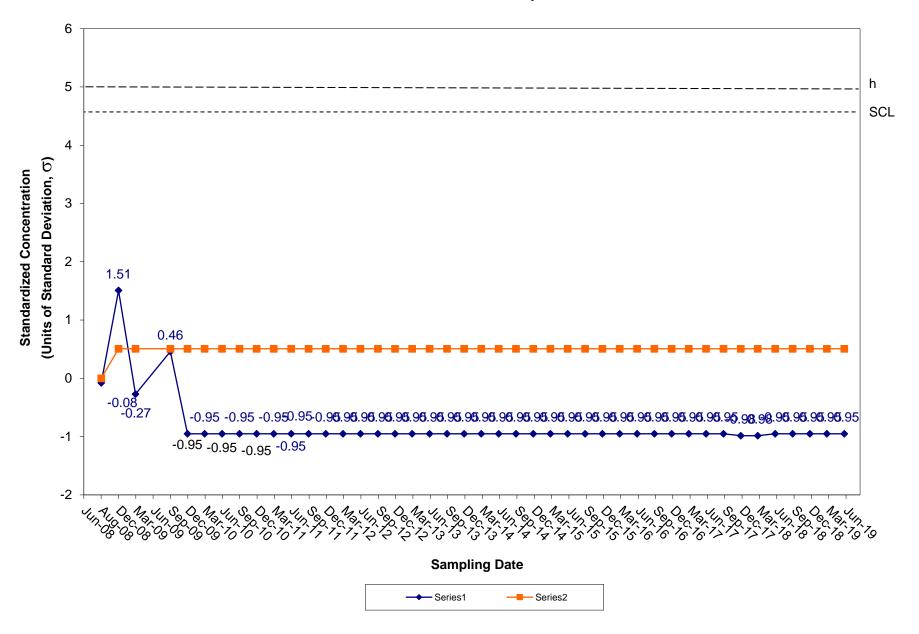

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Complaince Well OW-13

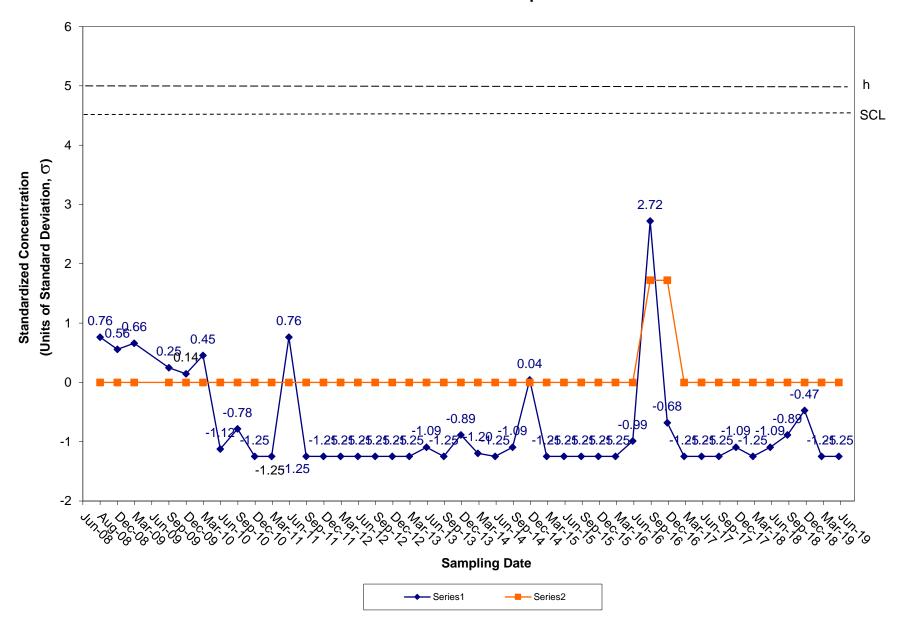

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-13

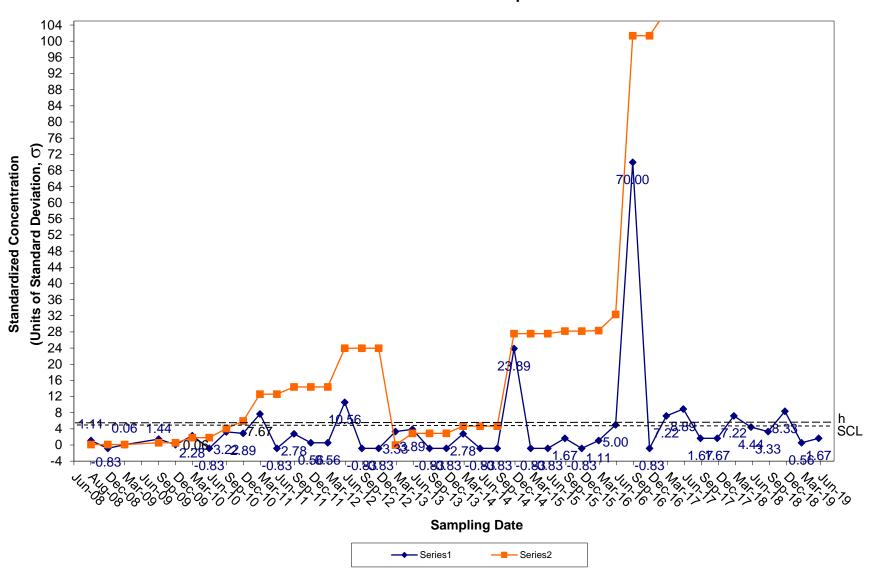

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-13

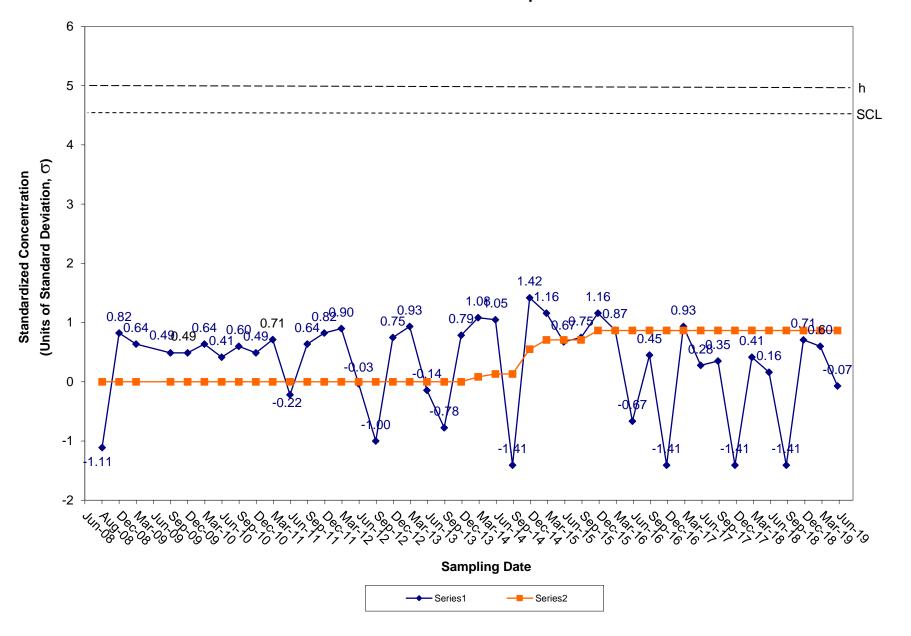

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-13

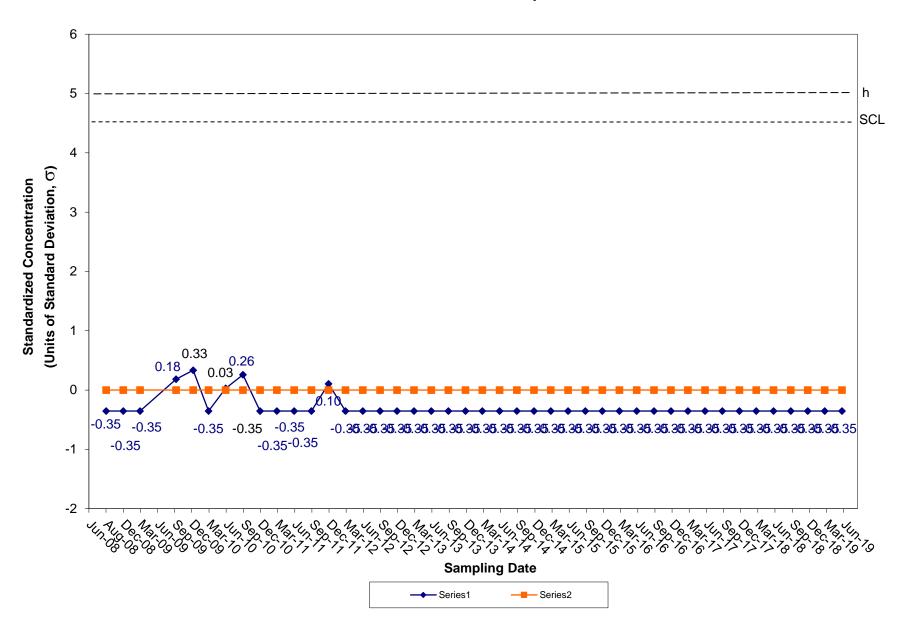

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-13

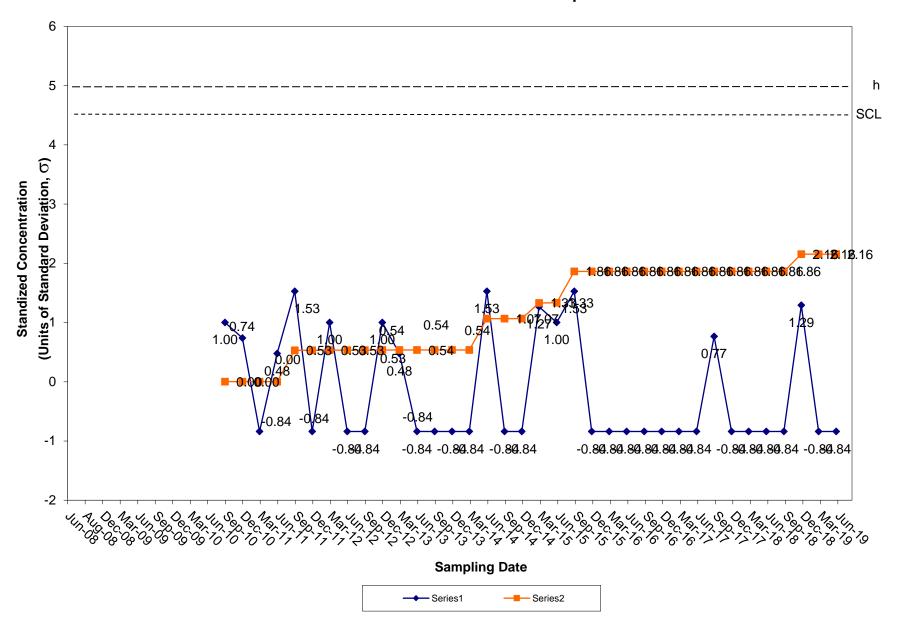

CUSUM Control Chart for Selenium Tiverton Landfill Groundwater Compliance Well OW-13

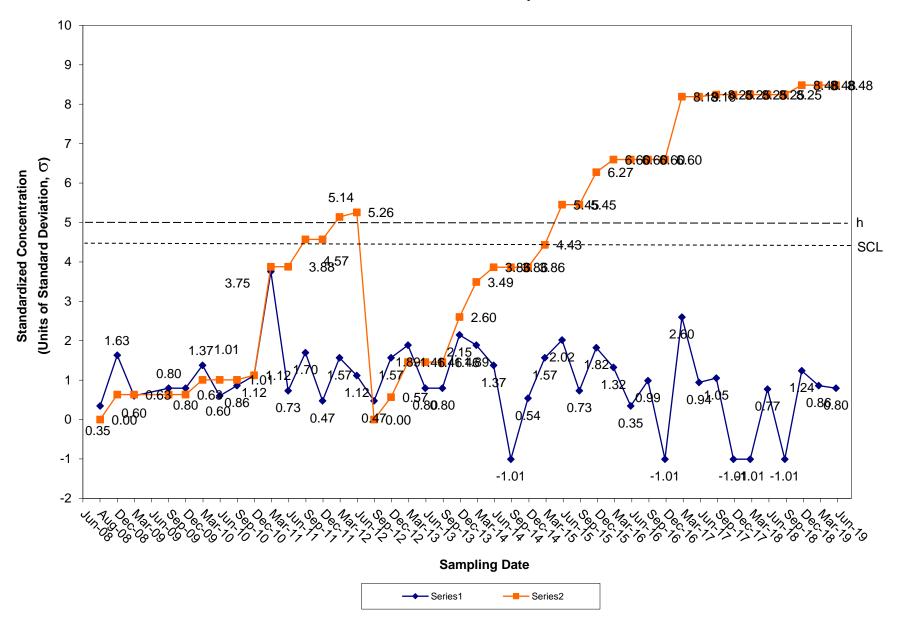

CUSUM Control Chart for Silver Tiverton Landfill Groundwater Compliance Well OW-13

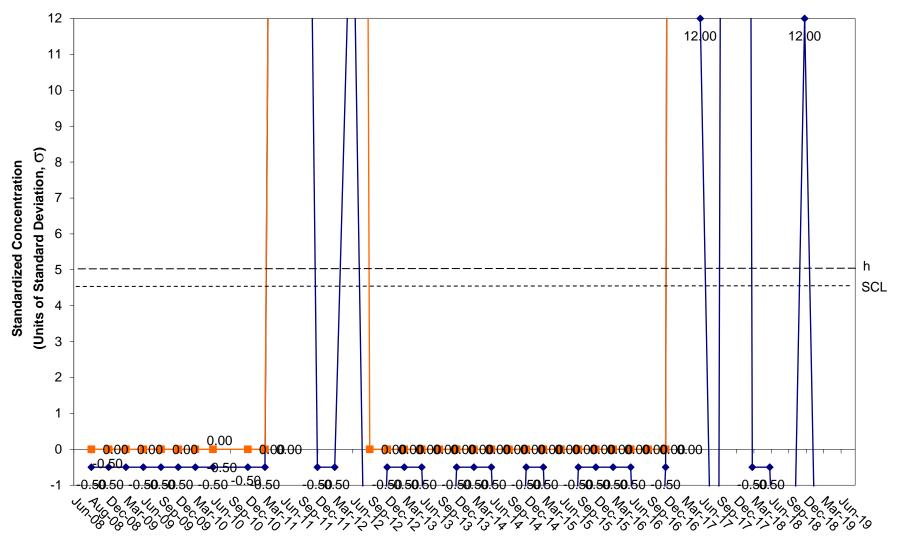

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-13

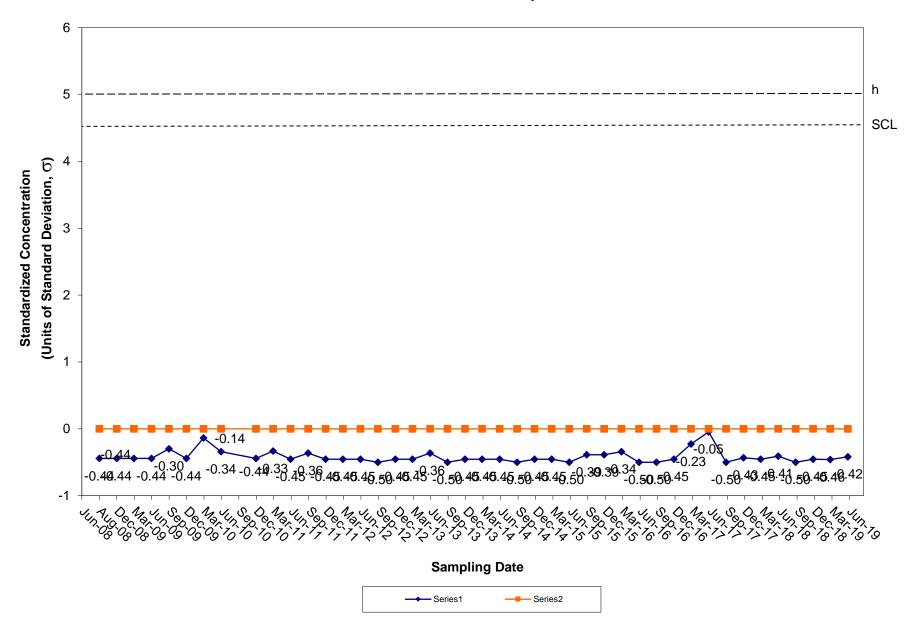

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-13

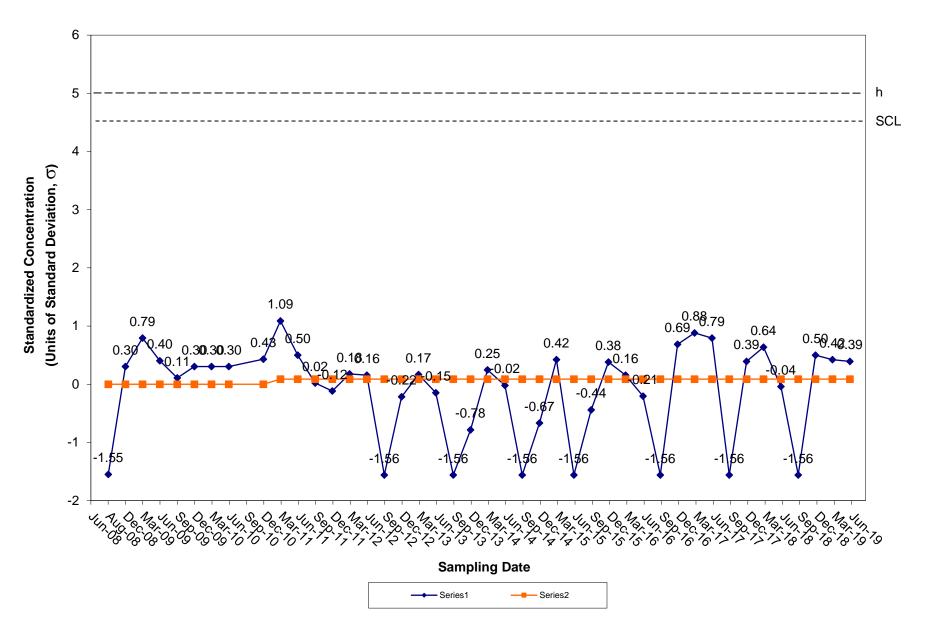

CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-13

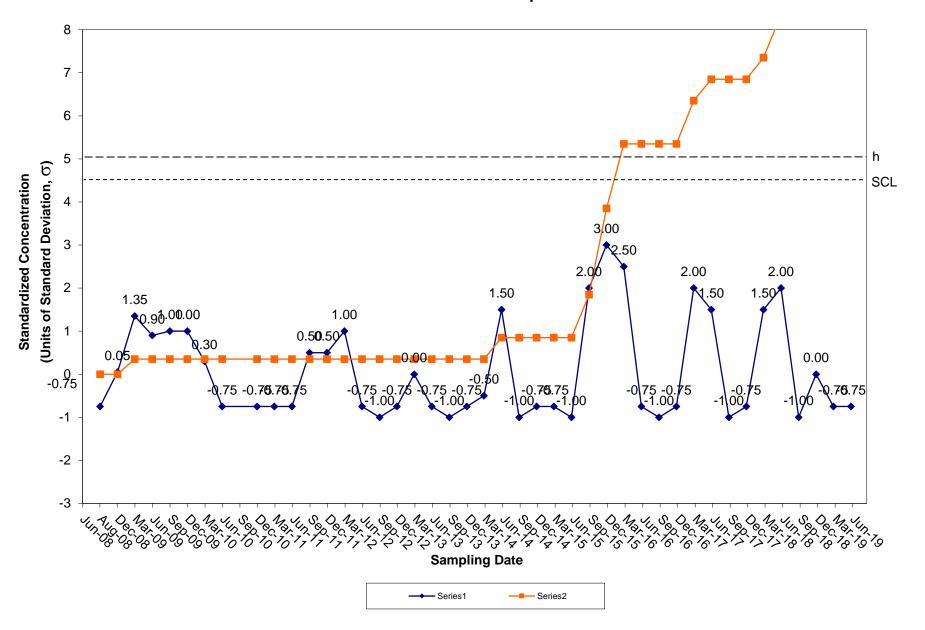

CUSUM Control Chart for 1,4-Dichlorobenzene - Adjusted Baseline Tiverton Landfill Groundwater Complaince Well OW-13

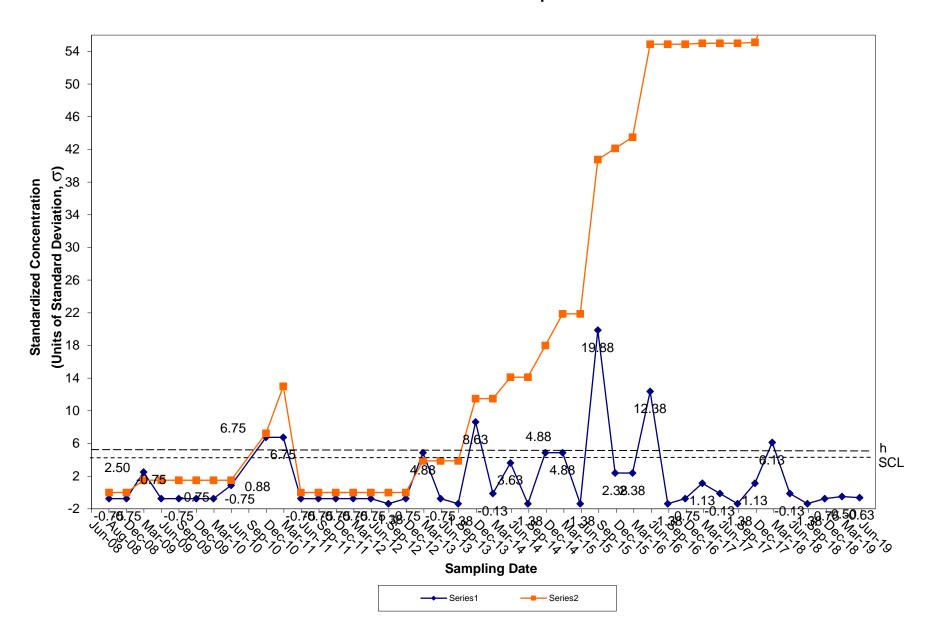
CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-13

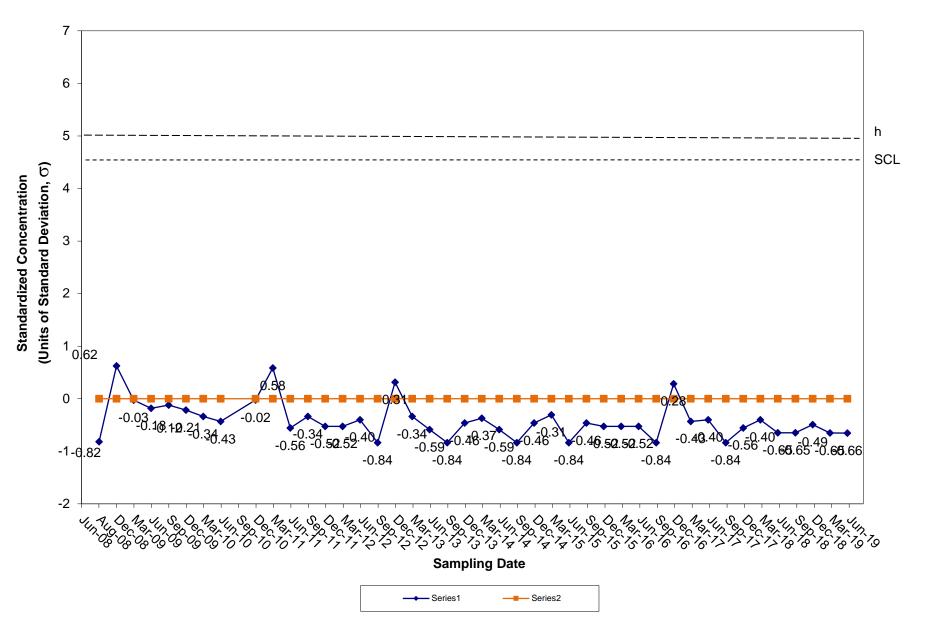


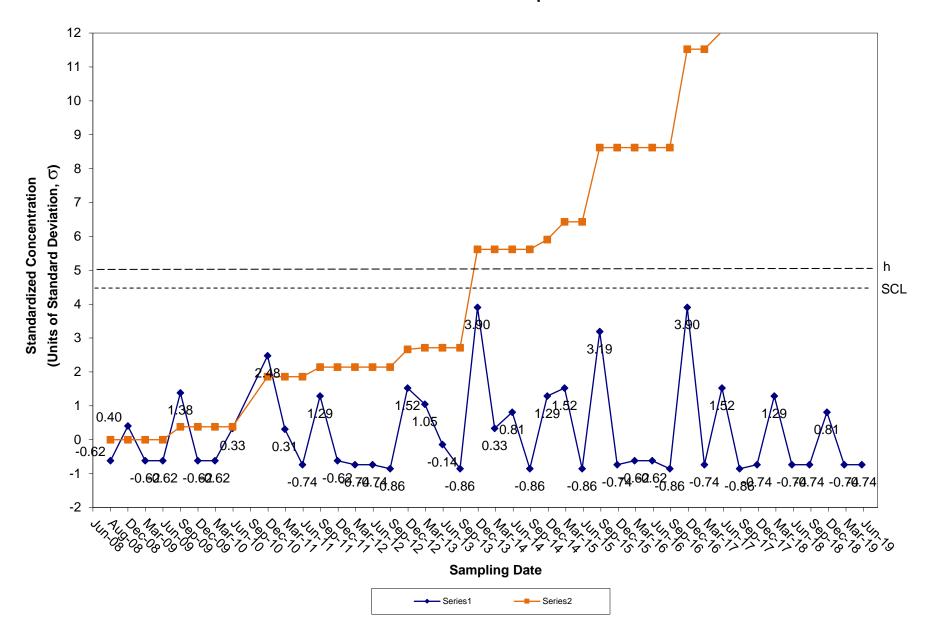
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-14

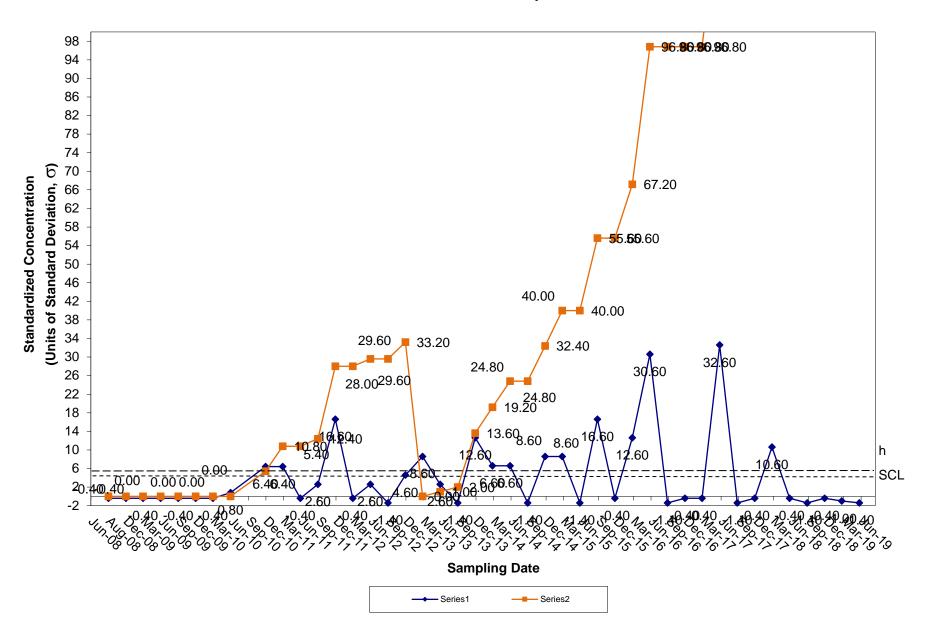


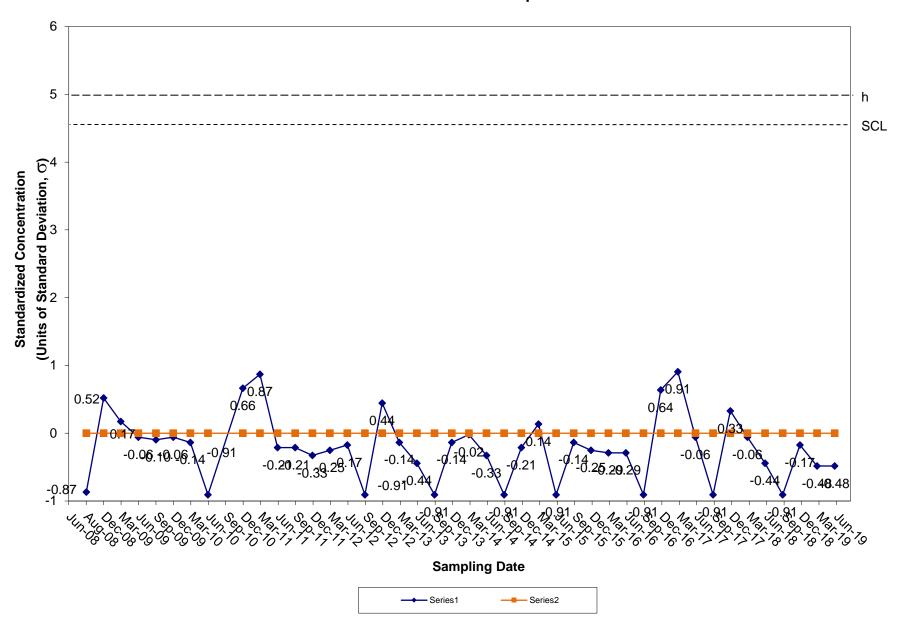

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-14

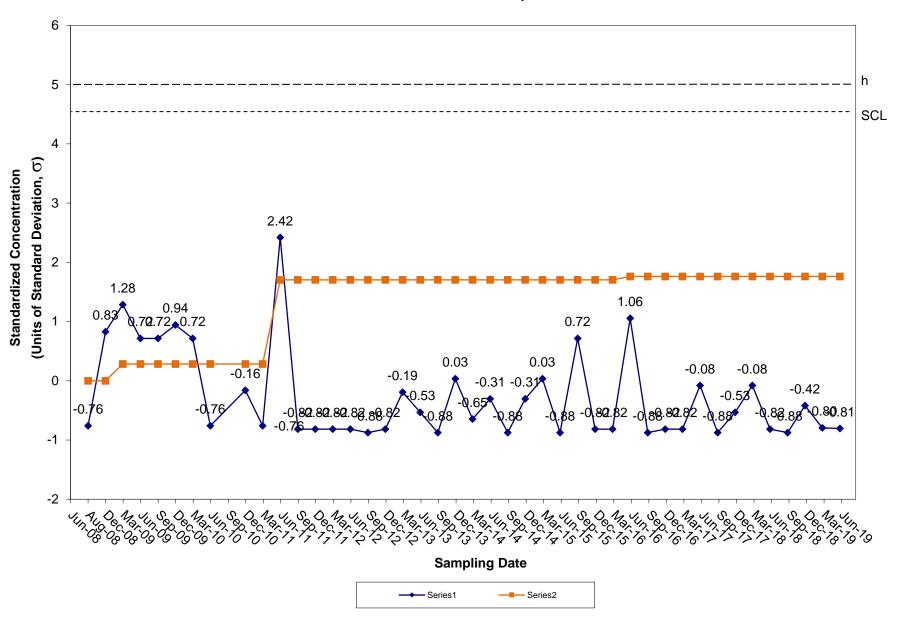

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-14

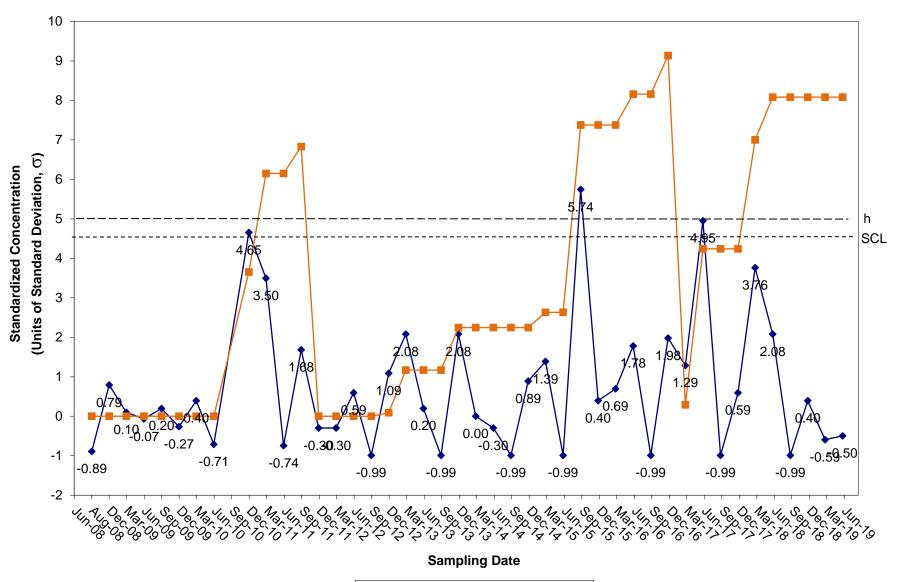

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-14

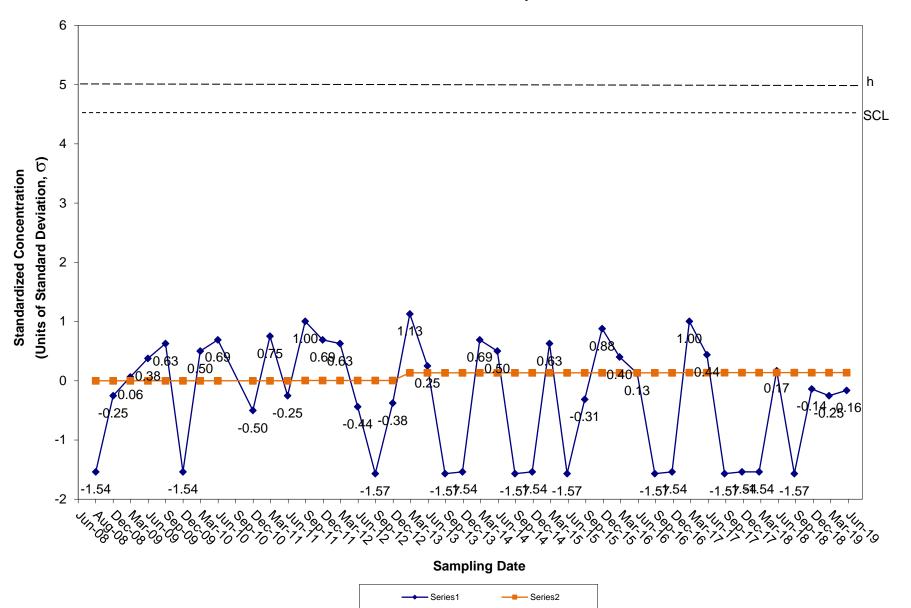

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-14

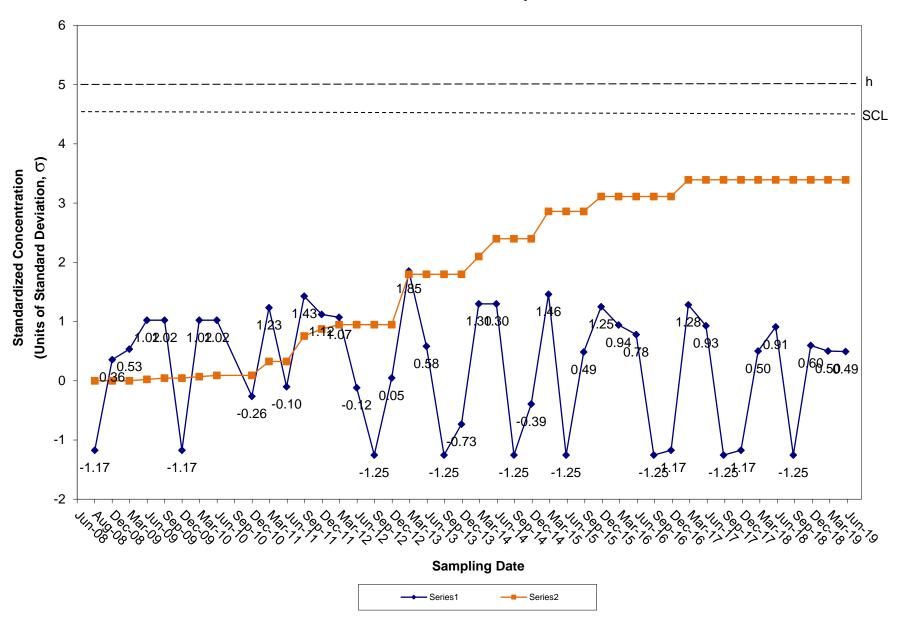

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-14

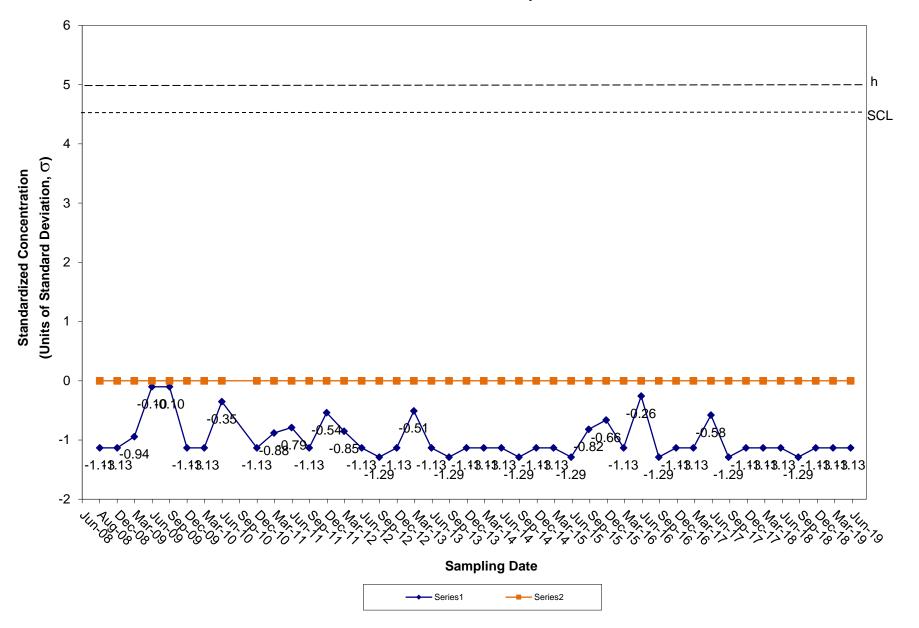

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-14

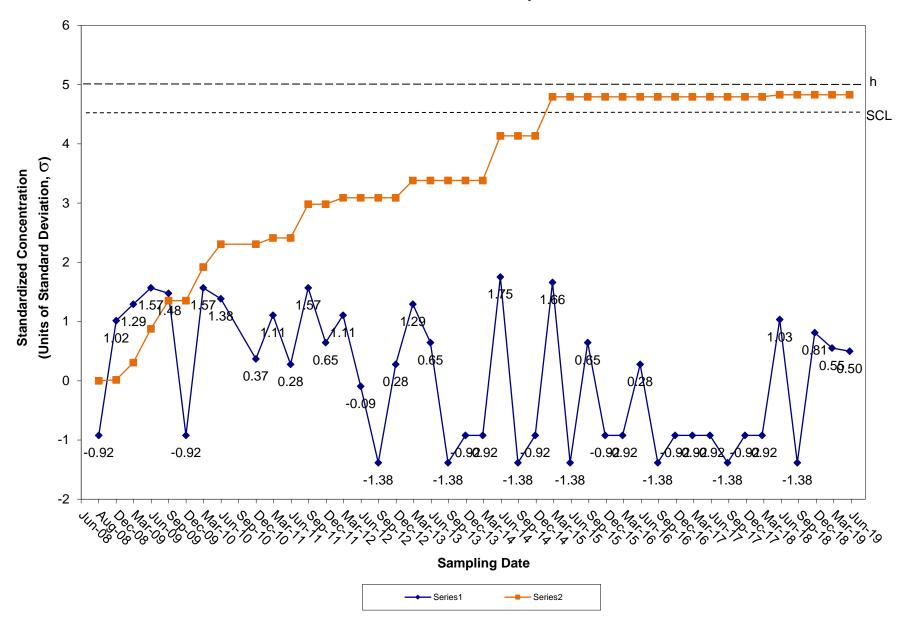
CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-14

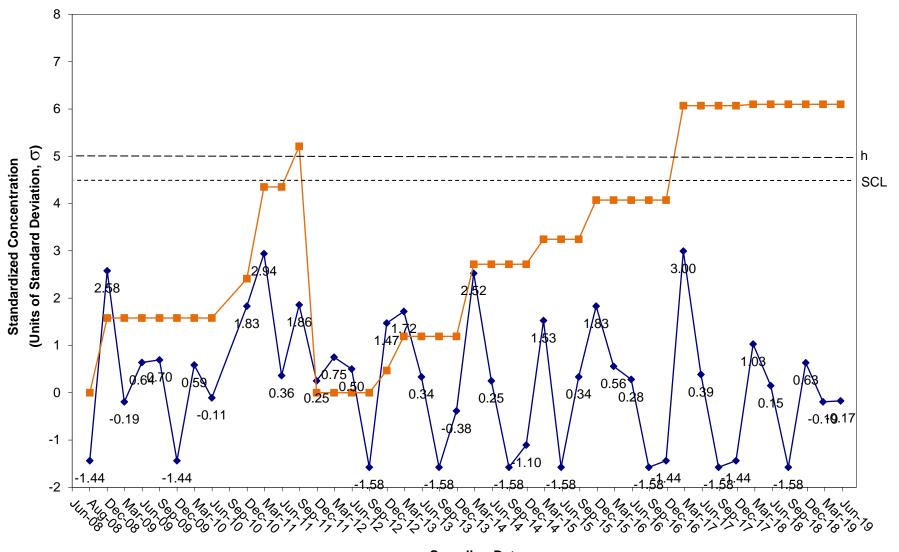


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-14

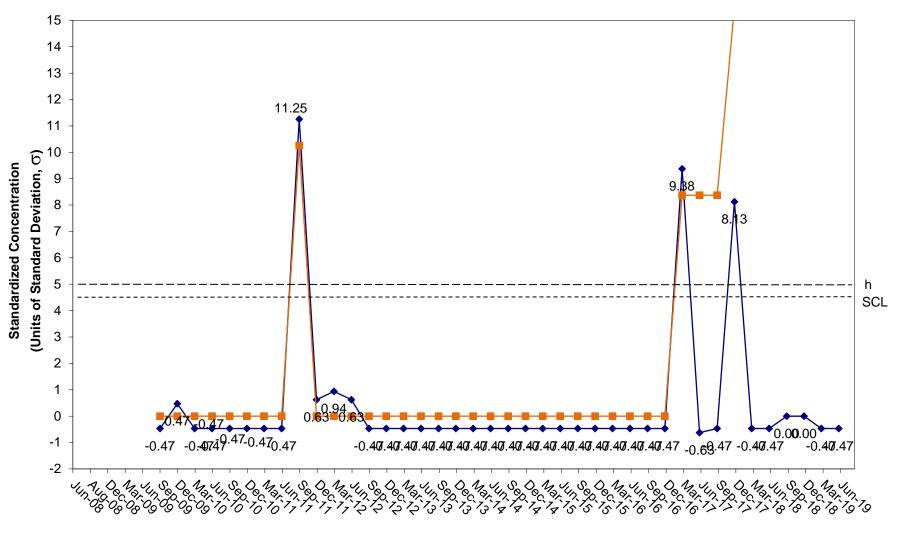



CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-14

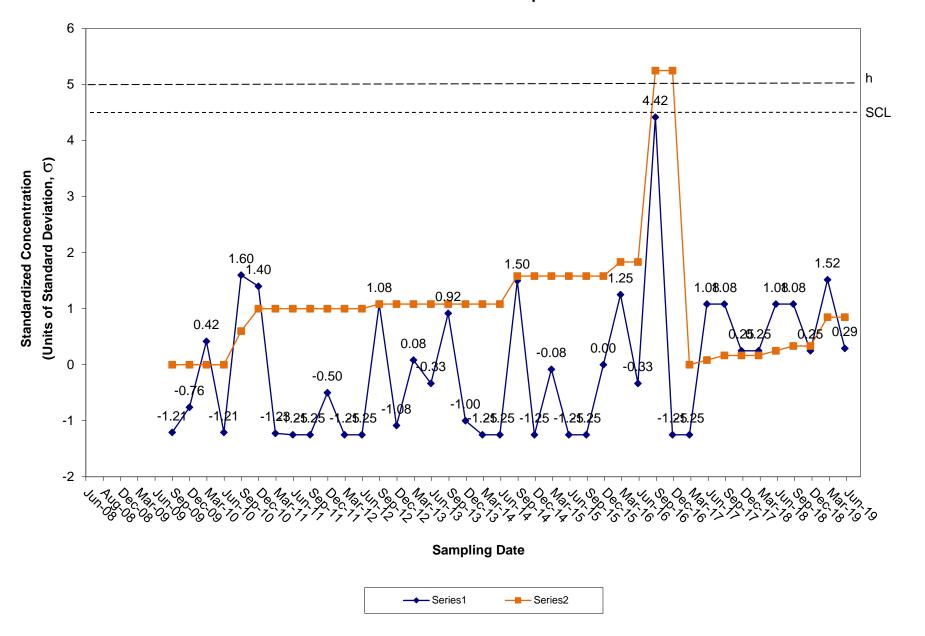

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

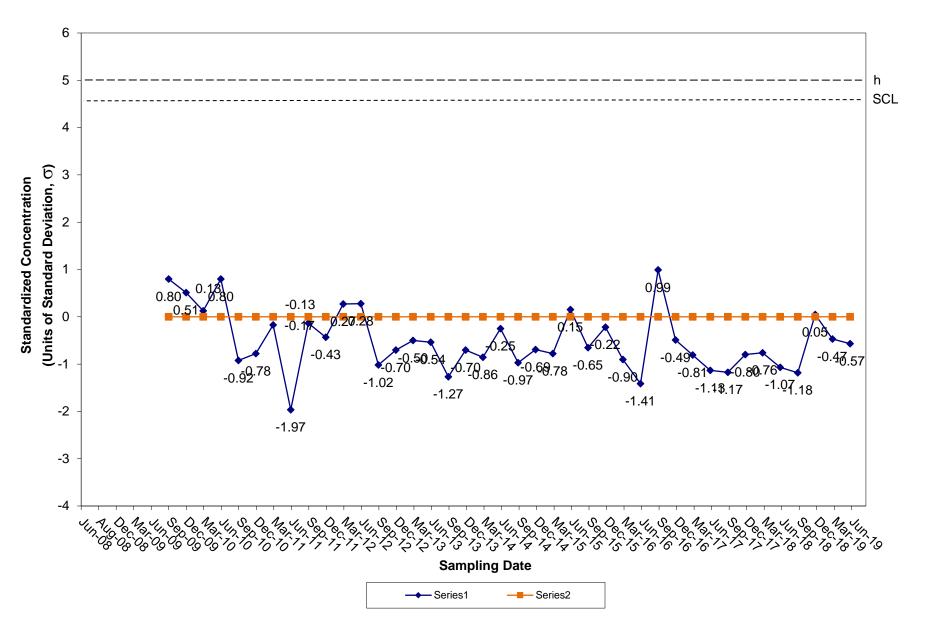

CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-14

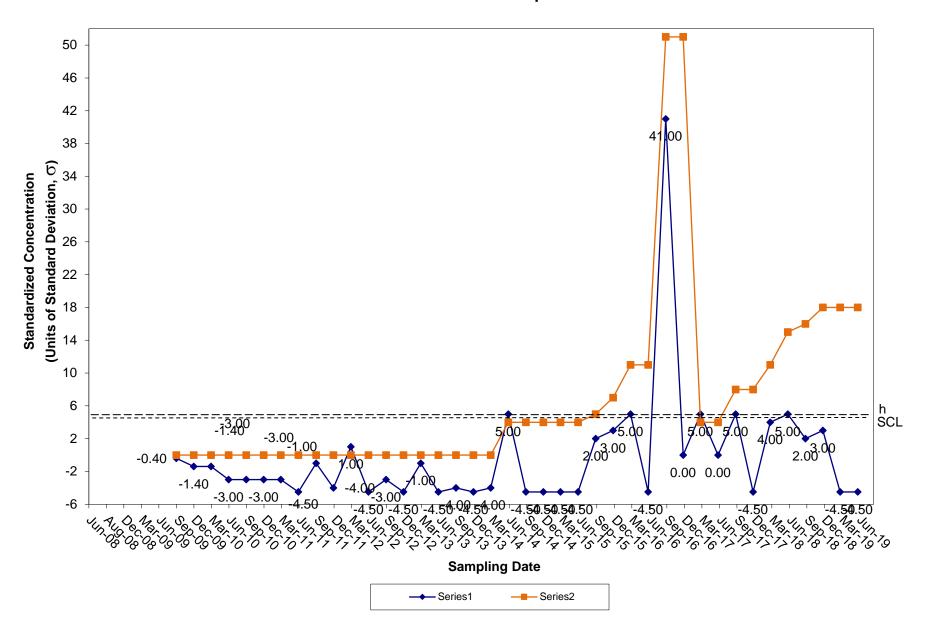
CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

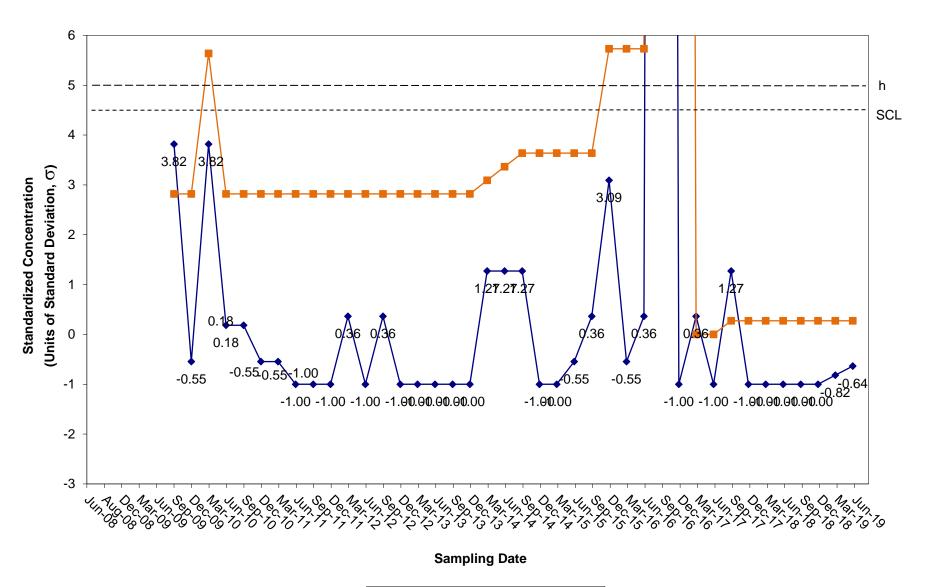

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-14

Sampling Date

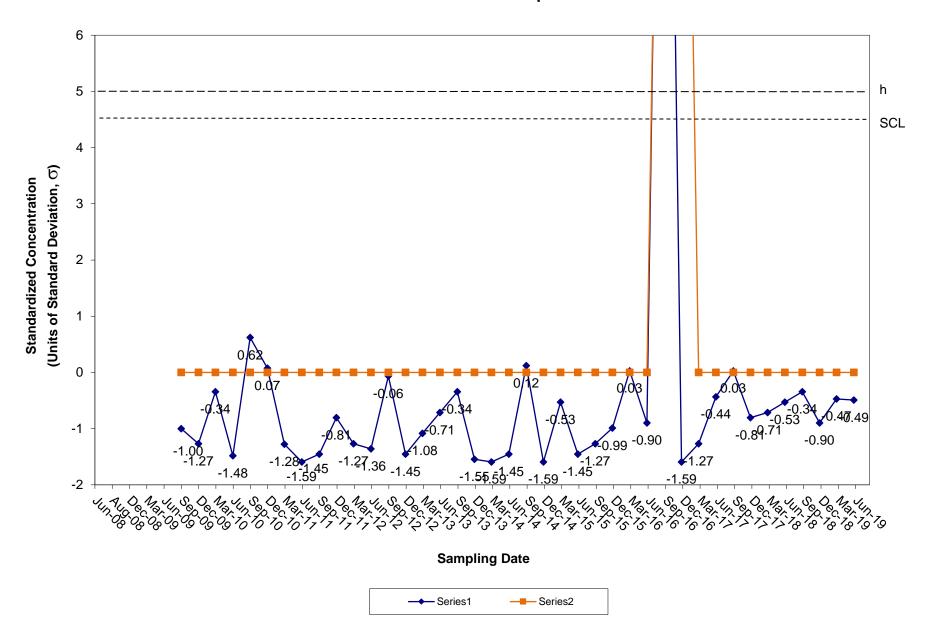

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-15


Sampling Date

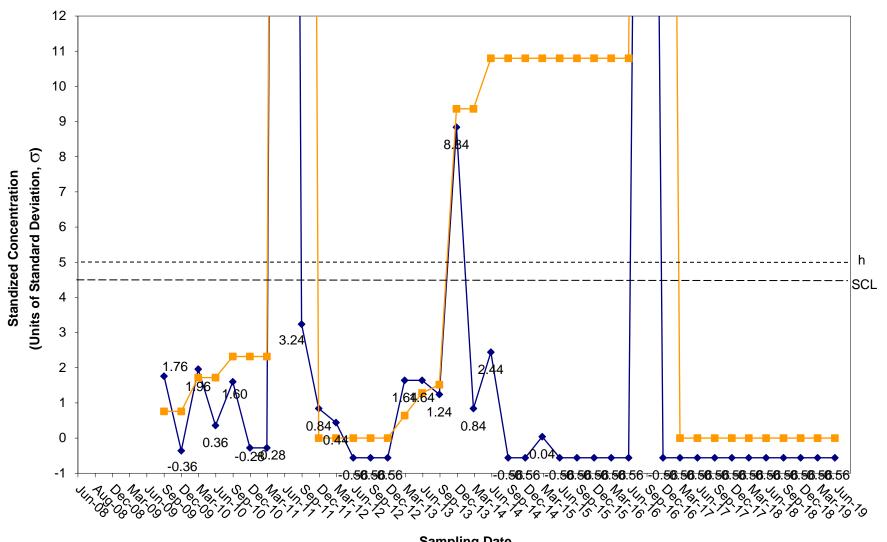

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-15

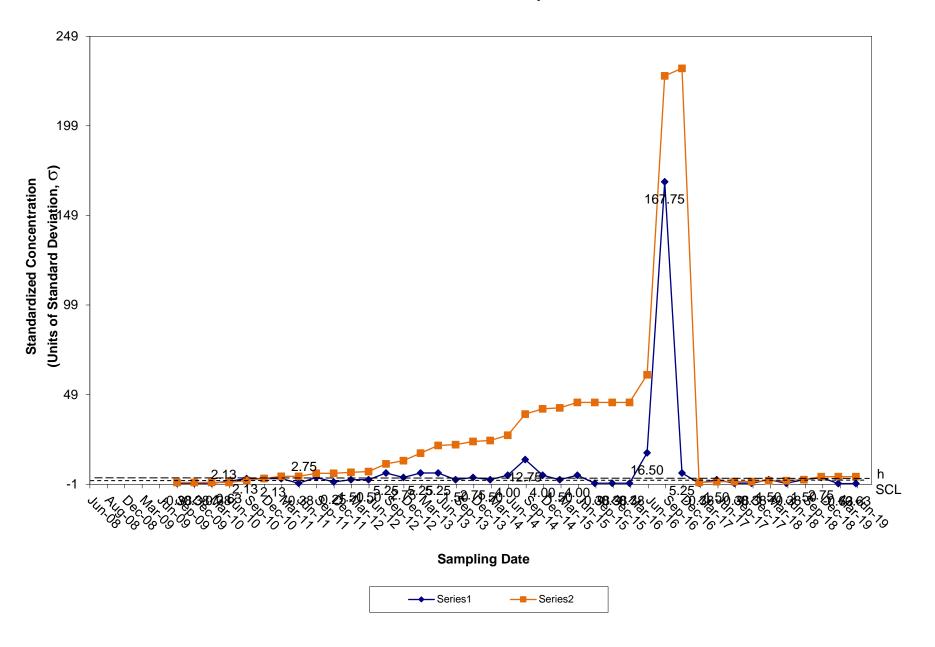
CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-15

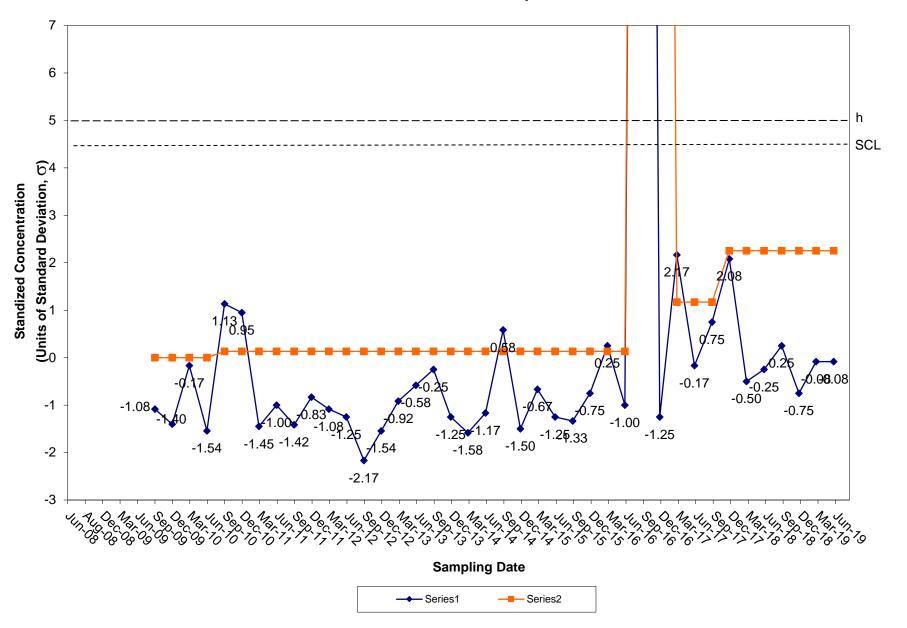


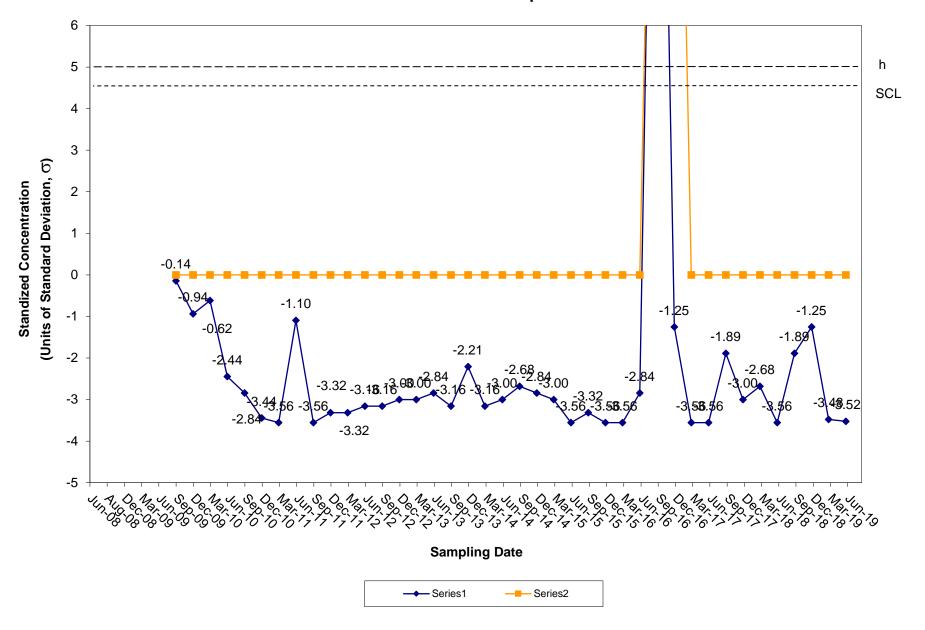
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-15

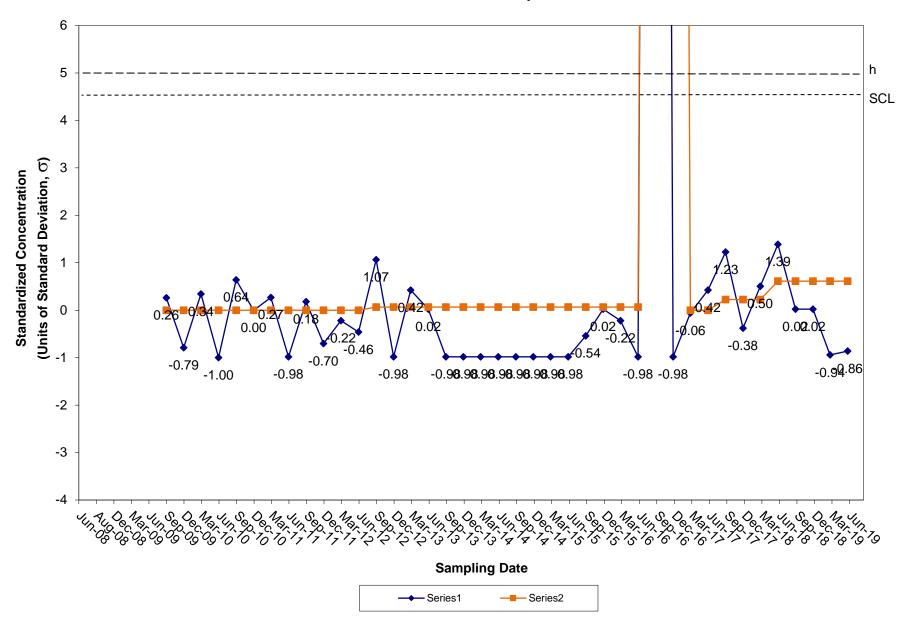


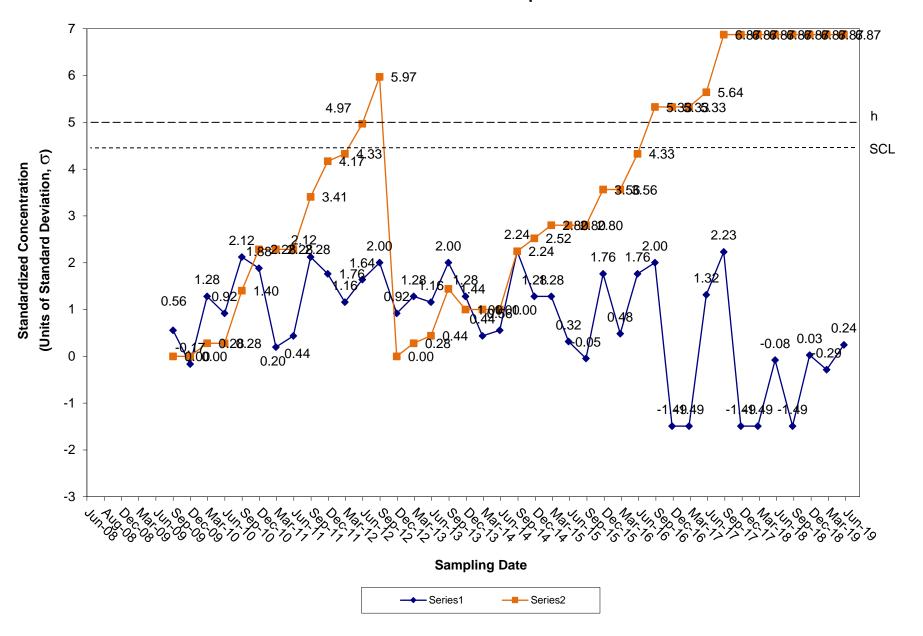
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-15

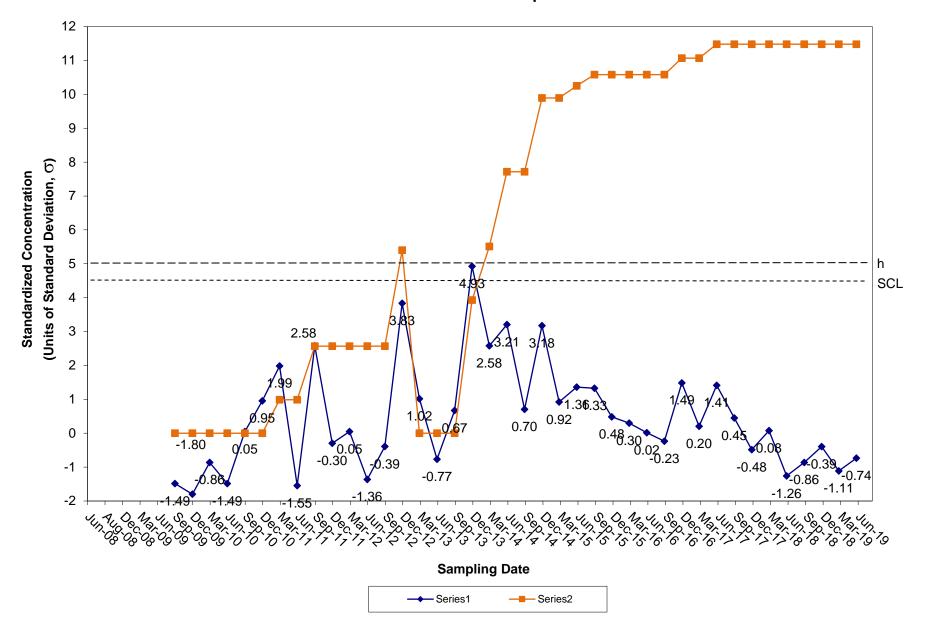

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-15

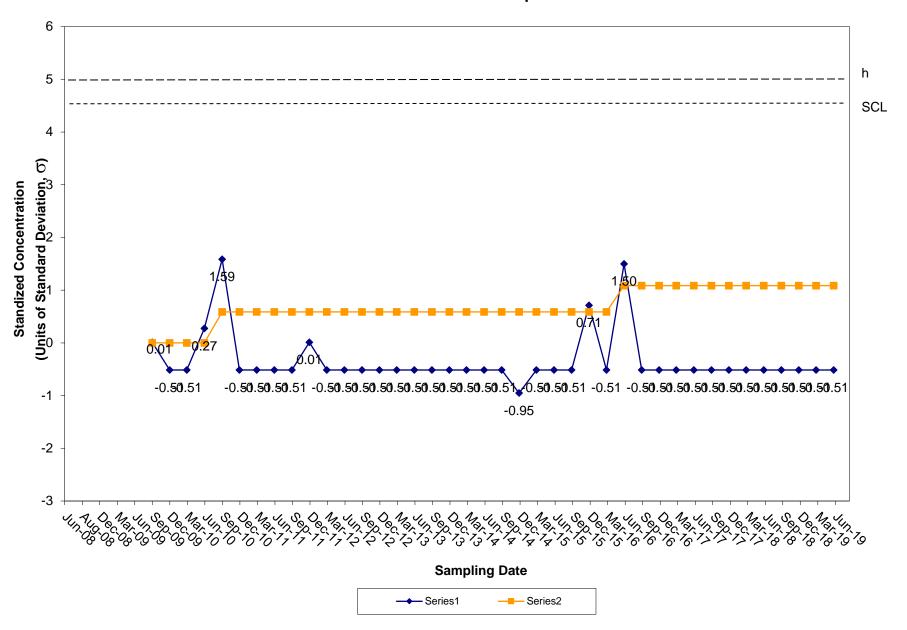

Sampling Date

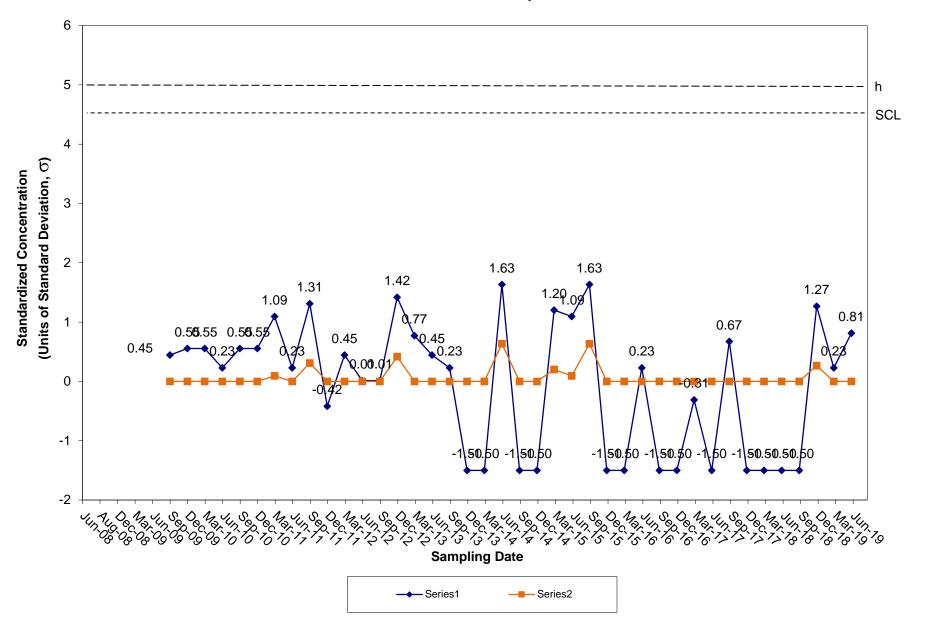

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-15

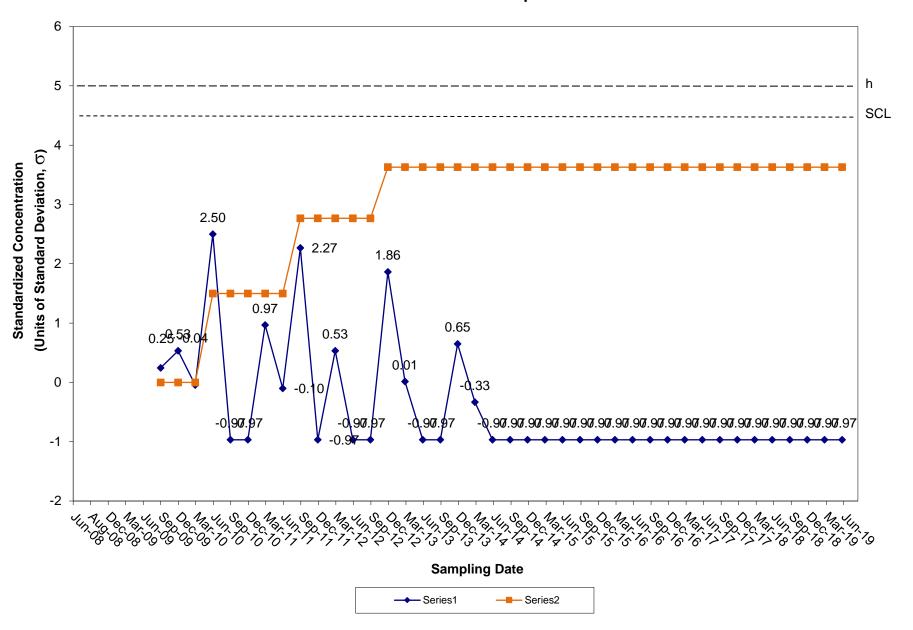

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Complaince Well OW-15

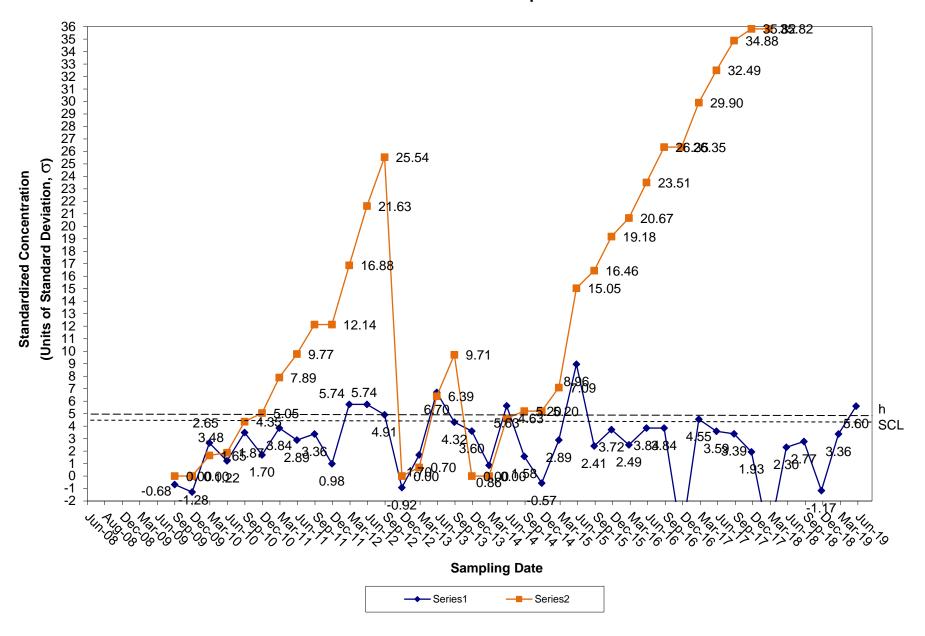

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Complaince Well OW-15

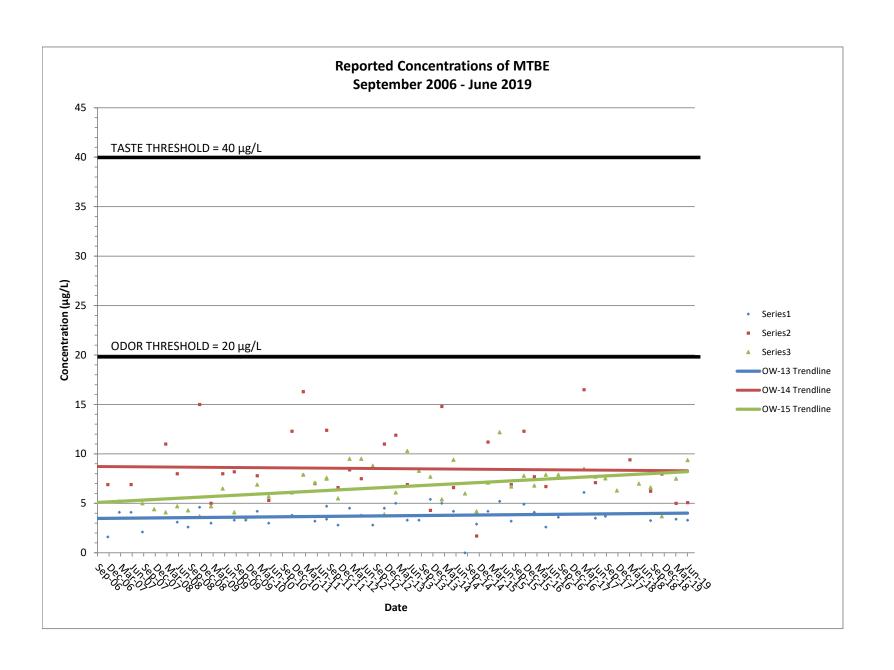

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Complaince Well OW-15


CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Xylenes Tiverton Landfill Groundwater Compliance Well OW-15

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-15

<u>ATTACHMENT NO. 6</u> REPORTED CONCENTRATIONS OF MTBE FIGURE

ATTACHMENT NO. 7 FIELD SAMPLING DATA SHEETS

FIELD SAMPLING DATA SHEET

PROJECT NAME: TIVERTON LANDFILL DATE: 6/27/2019 PARE PROJECT NO.: 94139.24 WEATHER: Sunny 80s **FIELD TESTING RESULTS:** SURFACE WATER LOCATION: SW-1 **READING 1** pH: 7.08 pH UNITS SPEC. COND: 0.50 mS/cm °С TEMPERATURE: 22.7 SW-2 SURFACE WATER LOCATION: **READING 1** pH: 5.89 pH UNITS SPEC. COND: 0.397 mS/cm ٥С TEMPERATURE: 24.8 SURFACE WATER LOCATION: SW-3 **READING 1** pH: pH UNITS 6.92 SPEC. COND: 0.144 mS/cm 20.7 °C TEMPERATURE: NOTES:

All surface water samples were clear with a brownish tinge.

FIELD SAMPLING DATA SHEET

PROJECT NAME: PARE PROJECT NO.	TIVERTON LANDFILL : 94139.24	DATE: WEATHER:	6/27/2019 Sunny 80s
WELL ID: OW-9	-	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	15.9 feet 0.4 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing N/A N/A
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	13.7feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS			
	READING 1	READING 2	
pH: SPEC. COND: TEMPERATURE:	5.48 pH UNITS 0.056 mS/cm 14.8 °C	5.47 0.055 14.9	pH UNITS mS/cm °C
NOTES:			
Samples were noted as generally clear and low in turbidity based on visual inspections of samples. Samples were collected at 4:00 PM.			
Methane Reading (% LEL): 0			

PROJECT NAME: PARE PROJECT NO.:			6/27/2019 Sunny 80s
WELL ID: OW-12	-	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.1 feet 2.2 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.2 +/- 7 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	3.5 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.02 pH UNITS 0.403 mS/cm 12.4 °C	6.03 0.395 12.3	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge	nerally clear and low in tur	bidity based on visual insp	ections of samples.
Samples were collected at	3:00 PM.		_
Methane Reading (% LEL):	: 0		

PROJECT NAME: PARE PROJECT NO.:			6/27/2019 Sunny 80s
WELL ID: OW-13	-	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	14.5 feet 1.70 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	4.0 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS	<u> </u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.45 pH UNITS 0.942 mS/cm 14.7 °C	6.45 0.937 14.6	_pH UNITS _mS/cm °C
NOTES:			
Samples were noted as ge	nerally clear and low in turb	oidity based on visual insp	ections of samples.
Samples were collected at	6:00 PM.		
Methane Reading (% LEL):	0		_

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	6/27/2019 Sunny 80s
WELL ID: OW-14	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	10.7 feet 1.1 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing N/A N/A
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	6.5 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.31 pH UNITS 1.382 mS/cm 18.3 °C	6.31 1.36 18.3	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge supernatant sampled after	•	,	ections of
Samples were collected at	1:00 PM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME:			6/27/2019	
PARE PROJECT NO.:	DJECT NO.: 94139.24		Sunny 80s	
WELL ID: OW-15	-	DIAMETER ((INCHES): 2	
PURGE DATA				
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16.9 feet 1.6 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-	
WATER LEVEL DATA				
DEPTH: MEASURE POINT:	7.2 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator	
FIELD TESTING RESULTS	<u>S</u>			
	READING 1	READ	ING 2	
pH: SPEC. COND: TEMPERATURE:	6.52 pH UNITS 1.293 mS/cm 14.9 °C	6.53 1.309 14.9	_pH UNITS _mS/cm _°C	
NOTES:				
Samples were noted as ge	nerally clear and low in tur	bidity based on visual insp	ections of samples.	
Samples were collected at	2:00 PM.		_	
Methane Reading (% LEL):	: >99%		_	

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	6/27/2019 Sunny 80s
WELL ID: OW-7	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH:	11.8 feet	MEASURE POINT:	Top of Casing
PURGE VOLUME (GAL): PURGER TYPE:	1.9 gallons Peristaltic pump	PURGE RATE (GPM): ELAPSED TIME (MIN):	0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH:	feet	ELEVATION:	See Site Plan
MEASURE POINT:	Top of Casing	DEVICE:	Water Level Indicator
FIELD TESTING RESULT	<u>'S</u>		
	READING 1	READ	ING 2
pH:	6.47 pH UNITS	6.47	_pH UNITS
SPEC. COND: TEMPERATURE:	0.503 mS/cm 13.4 °C	0.503 13.3	_mS/cm °C
NOTES:			
Samples were noted as ge	enerally clear and low in tur	bidity based on visual insp	ections of samples.
Samples were collected at	5:30 PM.		
Methane Reading (% LEL)	: 0		

PROJECT NAME: PARE PROJECT NO.:			6/27/2019 Sunny 80s
WELL ID: OW-16	_	DIAMETER ((INCHES): 2
PURGE DATA			
WELL DEPTH:	45.8feet	MEASURE POINT:	Top of Casing
PURGE VOLUME (GAL): PURGER TYPE:	7.5 gallons Peristaltic pump	PURGE RATE (GPM): ELAPSED TIME (MIN):	0.3 +/-
PURGER TIPE.	Pensialic pump	ELAPSED TIME (MIIN).	20 +/-
WATER LEVEL DATA			
DEPTH:	0.8 feet	ELEVATION:	See Site Plan
MEASURE POINT:	Top of Casing	DEVICE:	Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
pH:	6.52 pH UNITS	6.52	pH UNITS
SPEC. COND:	0.532 mS/cm	0.542	_mS/cm
TEMPERATURE:	12.8 °C	13.0	_°C
NOTES:			
Samples were noted as ge	nerally clear and low in turb	oidity based on visual insp	ections of samples.
Samples were collected at	5:00 PM.		
Methane Reading (% LEL)	: 0		

APPENDIX L

Bedrock Well Installation Report

December 4, 2017

PARECORP.COM

William Anderson, P.E., Director Tiverton DPW Town of Tiverton 343 Highland Road Tiverton, Rhode Island 02878

Re: Bedrock Well Installation Tiverton Municipal Sanitary Landfill Pare Project No. 94139.01/Task 27

Dear Mr. Anderson:

On October 4 and 5, 2017, a bedrock well (OW-16) was installed at the Tiverton Landfill in Tiverton, Rhode Island by New England Boring Contractors and observed by Pare Corporation (Pare). The bedrock well was installed using a track mounted drill rig with an air drill. The bedrock well was constructed using 4-inch steel casing, slotted PVC pipe, and solid PVC pipe.

The 4-inch casing was installed to a depth of 42 feet below the ground surface to approximately 2 feet above the ground surface. The top of bedrock was discovered at 10.5 feet below the ground surface with groundwater first being discovered at 17 feet below the ground surface. At the beginning of the day on October 5, the groundwater level has risen to 2 feet below the ground surface. From a depth of 32 feet to 42 feet below the ground surface slotted PVC pipe was installed. From a depth of 32 feet to the top of casing, solid PVC pipe was installed. Between the outside of the PVC pipe and the inside of the steel casing, holliston sand, bentonite, grout, and quickcrete were installed. Holliston sand was installed from the bottom of the hole to 15 feet below the ground surface. A bentonite seal was established from the top of rock to 15 feet below the ground surface. The rest of the hole was filled with grout. A detail drawing of the bedrock well and site photography are attached.

Personnel from Pare went to sample OW-16 and the adjacent overburden well OW-7 on November 8, 2017. During the purge and sampling of OW-16, the water level of OW-7 was unchanged, implicating that the wells are not directly connected. Attached are an analytical summary table and analytical results for the sampling of both wells.

Should you have any questions regarding this letter or the attached data, please feel free to contact the undersigned at (401) 334-4100, thank you.

Very truly yours,

Timothy P. Thies, P.E. Vice President

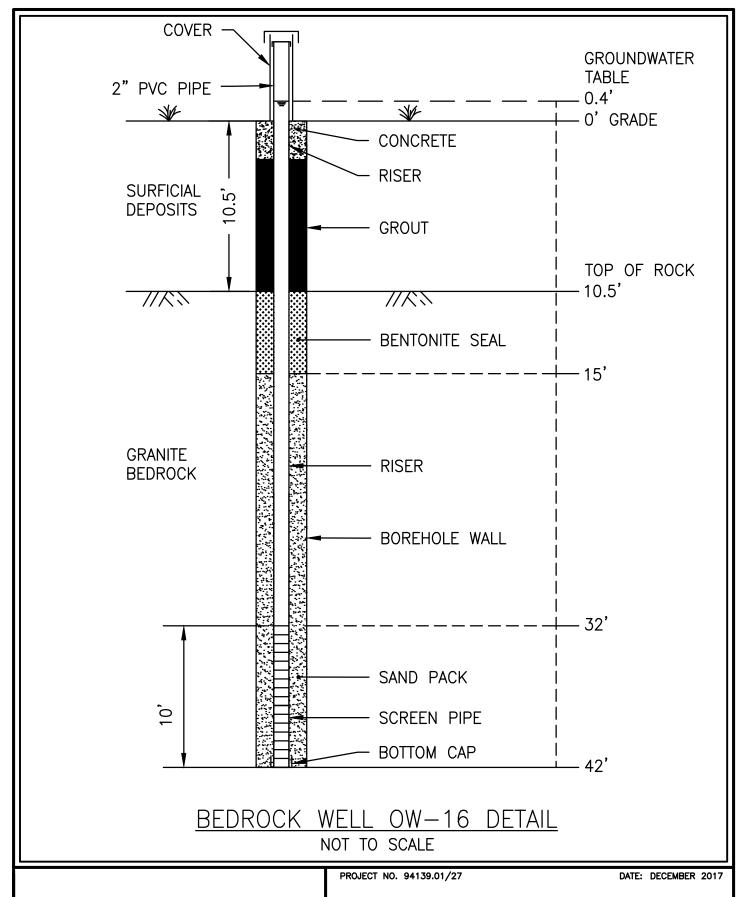
TPT/TCJ/abv

William Anderson, P.E., Director Tiverton DPW

December 4, 2017

Attachments: Bedrock Well Detail

Site Photography


Analytical Summary Table Analytical Data Report

cc: Jay Lambert, Tiverton Landfill Subcommittee (w/encl.)

Matthew Wojcik, Tiverton Town Administrator (w/encl.)

Travis C. Johnson, Pare Corporation (w/o encl.)

George G. Palmisciano, P.E. Pare Corporation (w/o encl.)

PARE CORPORATION ENGINEERS - SCIENTISTS - PLANNERS 8 BLACKSTONE VALLEY PLACE LINCOLN, RI 02865 401-334-4100 BEDROCK WELL DETAIL
TIVERTON MUNICIPAL
SANITARY LANDFILL

TIVERTON

RHODE ISLAND

	Tiverton Landfill Monitoring Well Sampling Results				
			11/8/2017		
				Overburden Well	Bedrock Well
	<u>Parameter</u>	Threshold Value	Method Detection Limit	OW-7	OW-16
<u>METALS</u>	Antimony	0.006 mg/L ¹	0.001 mg/L ¹	ND	ND
	Arsenic	0.010 mg/L ¹	0.002 mg/L ¹	ND	ND
	Barium	2 mg/L ¹	0.001 mg/L ¹	0.035	0.100
	Beryllium	0.004 mg/L ¹	0.001 mg/L ¹	ND	ND
	Cadmium	0.005 mg/L ¹	0.001 mg/L ¹	ND	ND
	Chromium	0.1 mg/L ¹	0.001 mg/L ¹	0.005	0.005
	Cobalt	0.73 mg/L ⁵	0.001 mg/L ⁵	0.018	0.005
	Copper	1.3 mg/L ¹	0.005 mg/L ¹	0.005	ND
	Lead	0.015 mg/L ¹	0.001 mg/L ¹	ND	ND
	Mercury	0.002 mg/L ¹	0.0002 mg/L ¹	ND	ND
	Nickel	0.1 mg/L ²	0.001 mg/L ²	0.021	0.010
	Selenium	0.05 mg/L ¹	0.002 mg/L ¹	ND	0.005
	Silver	0.1 mg/L ^{2,3}	0.001 mg/L ^{2,3}	ND	ND
	Thallium	0.002 mg/L ¹	0.0002 mg/L ¹	ND	ND
	Tin	22 mg/L ⁵	0.002 mg/L ⁵	ND	ND
	Vanadium	0.26 mg/L ⁵	0.001 mg/L ⁵	ND	ND
	Zinc	2 - 5 mg/L ^{2,3}	0.005 mg/L ^{2,3}	0.020	0.021
VOC's	MTBE	20-40 μg/L ⁴	1.0 μ g / L ⁴	5.9	4.6
	= Exceedance	ce of Threshold Value			

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 7K09004 Client Project: 94139 - Tiverton Landfill

Report Date: 16-November-2017

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Case Number: 7K09004

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
7K09004-01	OW-7	Water	11/08/2017	11/09/2017
7K09004-02	OW-16	Water	11/08/2017	11/09/2017

Case Number: 7K09004

Request for Analysis

OW-16

Analysis	Method
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

OW-7

Analysis	Method
Allalysis	
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C

Case Number: 7K09004

Silver EPA 6010C
Thallium EPA 7010
Tin EPA 6010C
Vanadium EPA 6010C
Volatile Organic Compounds EPA 8260C
Zinc EPA 6010C

Case Number: 7K09004

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Sample: OW-7 Case Number: 7K09004

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	ND	0.002
7440-39-3	Barium	6010C	0.035	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	0.005	0.001
7440-48-4	Cobalt	6010C	0.018	0.001
7440-50-8	Copper	6010C	0.005	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.021	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.020	0.005

ND = Not Detected

Sample: OW-16 Case Number: 7K09004

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	ND	0.002
7440-39-3	Barium	6010C	0.100	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	0.005	0.001
7440-48-4	Cobalt	6010C	0.005	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.010	0.001
7782-49-2	Selenium	6010C	0.005	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.021	0.005

ND = Not Detected

Sample: OW-7 Case Number: 7K09004

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-7 Case Number: 7K09004

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	5.9	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	108	70-130
1,2-Dichloroethane d4	100	70-130
4 BFB	103	70-130

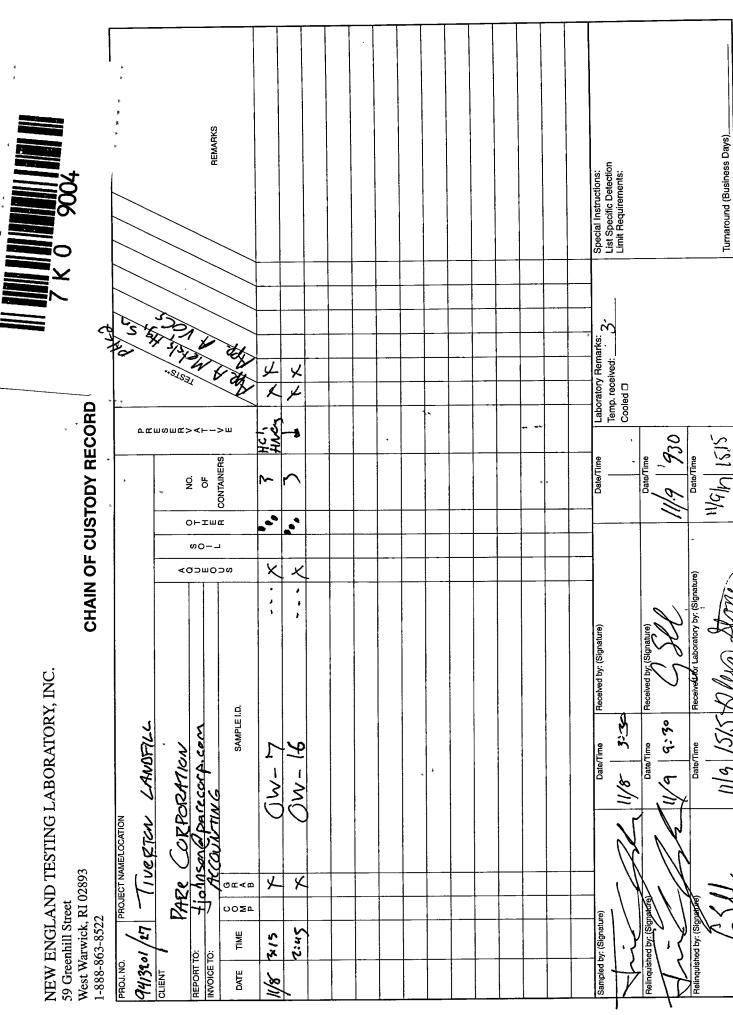
ND = Not Detected

Sample: OW-16 Case Number: 7K09004

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-16 Case Number: 7K09004


Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	4.6	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	96	70-130
1,2-Dichloroethane d4	94	70-130
4 BFB	103	70-130

ND = Not Detected

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbéstos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH